""" This file defines the 'subset' SomeValue classes. An instance of a SomeValue class stands for a Python object that has some known properties, for example that is known to be a list of non-negative integers. Each instance can be considered as an object that is only 'partially defined'. Another point of view is that each instance is a generic element in some specific subset of the set of all objects. """ # Old terminology still in use here and there: # SomeValue means one of the SomeXxx classes in this file. # Cell is an instance of one of these classes. # # Think about cells as potato-shaped circles in a diagram: # ______________________________________________________ # / SomeObject() \ # / ___________________________ ______________ \ # | / SomeInteger(nonneg=False) \____ / SomeString() \ \ # | / __________________________ \ | | | # | | / SomeInteger(nonneg=True) \ | | "hello" | | # | | | 0 42 _________/ | \______________/ | # | \ -3 \________________/ / | # \ \ -5 _____/ / # \ \________________________/ 3.1416 / # \_____________________________________________________/ # from __future__ import absolute_import import inspect import math import weakref from types import BuiltinFunctionType, MethodType from collections import OrderedDict, defaultdict import rpython from rpython.tool import descriptor from rpython.tool.pairtype import pair, extendabletype, doubledispatch from rpython.rlib.rarithmetic import r_uint, base_int, r_singlefloat, r_longfloat class State(object): # A global attribute :-( Patch it with 'True' to enable checking of # the no_nul attribute... check_str_without_nul = False allow_int_to_float = True TLS = State() class SomeObject(object): """The set of all objects. Each instance stands for an arbitrary object about which nothing is known.""" __metaclass__ = extendabletype immutable = False knowntype = object def __init__(self): assert type(self) is not SomeObject def __eq__(self, other): return (self.__class__ is other.__class__ and self.__dict__ == other.__dict__) def __ne__(self, other): return not (self == other) def __repr__(self): try: reprdict = TLS.reprdict except AttributeError: reprdict = TLS.reprdict = {} if self in reprdict: kwds = '...' else: reprdict[self] = True try: items = self.__dict__.items() items.sort() args = [] for k, v in items: m = getattr(self, 'fmt_' + k, repr) r = m(v) if r is not None: args.append('%s=%s' % (k, r)) kwds = ', '.join(args) finally: del reprdict[self] return '%s(%s)' % (self.__class__.__name__, kwds) def fmt_knowntype(self, t): return t.__name__ def contains(self, other): if self == other: return True try: return union(self, other) == self except UnionError: return False def is_constant(self): d = self.__dict__ return 'const' in d or 'const_box' in d def is_immutable_constant(self): return self.immutable and 'const' in self.__dict__ # delegate accesses to 'const' to accesses to 'const_box.value', # where const_box is a Constant. This is not a property, in order # to allow 'self.const = xyz' to work as well. class ConstAccessDelegator(object): def __get__(self, obj, cls=None): return obj.const_box.value const = ConstAccessDelegator() del ConstAccessDelegator def can_be_none(self): return True def noneify(self): raise UnionError(self, s_None) def nonnoneify(self): return self @doubledispatch def intersection(s_obj1, s_obj2): """Return the intersection of two annotations, or an over-approximation thereof""" raise NotImplementedError @doubledispatch def difference(s_obj1, s_obj2): """Return the set difference of two annotations, or an over-approximation thereof""" raise NotImplementedError class SomeType(SomeObject): "Stands for a type. We might not be sure which one it is." knowntype = type immutable = True def can_be_none(self): return False class SomeTypeOf(SomeType): """The type of a variable""" def __init__(self, args_v): self.is_type_of = args_v def typeof(args_v): if args_v: result = SomeTypeOf(args_v) if len(args_v) == 1: s_arg = args_v[0].annotation if isinstance(s_arg, SomeException) and len(s_arg.classdefs) == 1: cdef, = s_arg.classdefs result.const = cdef.classdesc.pyobj return result else: return SomeType() class SomeFloat(SomeObject): "Stands for a float or an integer." knowntype = float # if we don't know if it's a float or an int, # pretend it's a float. immutable = True def __eq__(self, other): if (type(self) is SomeFloat and type(other) is SomeFloat and self.is_constant() and other.is_constant()): # NaN unpleasantness. if math.isnan(self.const) and math.isnan(other.const): return True # 0.0 vs -0.0 unpleasantness. if not self.const and not other.const: return math.copysign(1., self.const) == math.copysign(1., other.const) # return super(SomeFloat, self).__eq__(other) def can_be_none(self): return False class SomeSingleFloat(SomeObject): "Stands for an r_singlefloat." # No operation supported, not even union with a regular float knowntype = r_singlefloat immutable = True def can_be_none(self): return False class SomeLongFloat(SomeObject): "Stands for an r_longfloat." # No operation supported, not even union with a regular float knowntype = r_longfloat immutable = True def can_be_none(self): return False class SomeInteger(SomeFloat): "Stands for an object which is known to be an integer." knowntype = int # size is in multiples of C's sizeof(long)! def __init__(self, nonneg=False, unsigned=None, knowntype=None): assert (knowntype is None or knowntype is int or issubclass(knowntype, base_int)) if knowntype is None: if unsigned: knowntype = r_uint else: knowntype = int elif unsigned is not None: raise TypeError('Conflicting specification for SomeInteger') self.knowntype = knowntype unsigned = self.knowntype(-1) > 0 self.nonneg = unsigned or nonneg self.unsigned = unsigned # rpython.rlib.rarithmetic.r_uint class SomeBool(SomeInteger): "Stands for true or false." knowntype = bool nonneg = True unsigned = False def __init__(self): pass def set_knowntypedata(self, knowntypedata): assert not hasattr(self, 'knowntypedata') for key, value in knowntypedata.items(): if not value: del knowntypedata[key] if knowntypedata: self.knowntypedata = knowntypedata class SomeStringOrUnicode(SomeObject): """Base class for shared implementation of SomeString, SomeUnicodeString and SomeByteArray. Cannot be an annotation.""" immutable = True can_be_None = False no_nul = False # No NUL character in the string. def __init__(self, can_be_None=False, no_nul=False): assert type(self) is not SomeStringOrUnicode if can_be_None: self.can_be_None = True if no_nul: assert self.immutable #'no_nul' cannot be used with SomeByteArray self.no_nul = True def can_be_none(self): return self.can_be_None def __eq__(self, other): if self.__class__ is not other.__class__: return False d1 = self.__dict__ d2 = other.__dict__ if not TLS.check_str_without_nul: d1 = d1.copy() d1['no_nul'] = 0 d2 = d2.copy() d2['no_nul'] = 0 return d1 == d2 def nonnoneify(self): return self.__class__(can_be_None=False, no_nul=self.no_nul) def nonnulify(self): if self.can_be_None: return self.__class__(can_be_None=True, no_nul=True) else: return self.__class__(no_nul=True) class SomeString(SomeStringOrUnicode): "Stands for an object which is known to be a string." knowntype = str def noneify(self): return SomeString(can_be_None=True, no_nul=self.no_nul) class SomeUnicodeString(SomeStringOrUnicode): "Stands for an object which is known to be an unicode string" knowntype = unicode def noneify(self): return SomeUnicodeString(can_be_None=True, no_nul=self.no_nul) class SomeByteArray(SomeStringOrUnicode): immutable = False knowntype = bytearray class SomeChar(SomeString): "Stands for an object known to be a string of length 1." can_be_None = False def __init__(self, no_nul=False): # no 'can_be_None' argument here if no_nul: self.no_nul = True class SomeUnicodeCodePoint(SomeUnicodeString): "Stands for an object known to be a unicode codepoint." can_be_None = False def __init__(self, no_nul=False): # no 'can_be_None' argument here if no_nul: self.no_nul = True SomeString.basestringclass = SomeString SomeString.basecharclass = SomeChar SomeUnicodeString.basestringclass = SomeUnicodeString SomeUnicodeString.basecharclass = SomeUnicodeCodePoint class SomeList(SomeObject): "Stands for a homogenous list of any length." knowntype = list def __init__(self, listdef): self.listdef = listdef def __eq__(self, other): if self.__class__ is not other.__class__: return False if not self.listdef.same_as(other.listdef): return False selfdic = self.__dict__.copy() otherdic = other.__dict__.copy() del selfdic['listdef'] del otherdic['listdef'] return selfdic == otherdic def can_be_none(self): return True def noneify(self): return SomeList(self.listdef) class SomeTuple(SomeObject): "Stands for a tuple of known length." knowntype = tuple immutable = True def __init__(self, items): self.items = tuple(items) # tuple of s_xxx elements for i in items: if not i.is_constant(): break else: self.const = tuple([i.const for i in items]) def can_be_none(self): return False class SomeDict(SomeObject): "Stands for a dict." knowntype = dict def __init__(self, dictdef): self.dictdef = dictdef def __eq__(self, other): if self.__class__ is not other.__class__: return False if not self.dictdef.same_as(other.dictdef): return False selfdic = self.__dict__.copy() otherdic = other.__dict__.copy() del selfdic['dictdef'] del otherdic['dictdef'] return selfdic == otherdic def can_be_none(self): return True def fmt_const(self, const): if len(const) < 20: return repr(const) else: return '{...%s...}' % (len(const),) def noneify(self): return type(self)(self.dictdef) class SomeOrderedDict(SomeDict): knowntype = OrderedDict def method_copy(dct): return SomeOrderedDict(dct.dictdef) def method_update(dct1, dct2): if s_None.contains(dct2): return SomeImpossibleValue() assert isinstance(dct2, SomeOrderedDict), "OrderedDict.update(dict) not allowed" dct1.dictdef.union(dct2.dictdef) SomeDict = SomeOrderedDict # all dicts are ordered! class SomeIterator(SomeObject): "Stands for an iterator returning objects from a given container." knowntype = type(iter([])) # arbitrarily chose seqiter as the type def __init__(self, s_container, *variant): self.variant = variant self.s_container = s_container def can_be_none(self): return False class SomeInstance(SomeObject): "Stands for an instance of a (user-defined) class." def __init__(self, classdef, can_be_None=False, flags={}): self.classdef = classdef self.knowntype = classdef.classdesc if classdef else None self.can_be_None = can_be_None self.flags = flags def fmt_knowntype(self, kt): return None def fmt_classdef(self, cdef): if cdef is None: return 'object' else: return cdef.name def fmt_flags(self, flags): if flags: return repr(flags) else: return None def can_be_none(self): return self.can_be_None def nonnoneify(self): return SomeInstance(self.classdef, can_be_None=False) def noneify(self): return SomeInstance(self.classdef, can_be_None=True) @intersection.register(SomeInstance, SomeInstance) def intersection_Instance(s_inst1, s_inst2): can_be_None = s_inst1.can_be_None and s_inst2.can_be_None if s_inst1.classdef.issubclass(s_inst2.classdef): return SomeInstance(s_inst1.classdef, can_be_None=can_be_None) elif s_inst2.classdef.issubclass(s_inst1.classdef): return SomeInstance(s_inst2.classdef, can_be_None=can_be_None) else: return s_ImpossibleValue @difference.register(SomeInstance, SomeInstance) def difference_Instance_Instance(s_inst1, s_inst2): if s_inst1.classdef.issubclass(s_inst2.classdef): return s_ImpossibleValue else: return s_inst1 class SomeException(SomeObject): """The set of exceptions obeying type(exc) in self.classes""" def __init__(self, classdefs): self.classdefs = classdefs def can_be_none(self): return False def as_SomeInstance(self): return unionof(*[SomeInstance(cdef) for cdef in self.classdefs]) @intersection.register(SomeException, SomeInstance) def intersection_Exception_Instance(s_exc, s_inst): classdefs = {c for c in s_exc.classdefs if c.issubclass(s_inst.classdef)} if classdefs: return SomeException(classdefs) else: return s_ImpossibleValue @intersection.register(SomeInstance, SomeException) def intersection_Exception_Instance(s_inst, s_exc): return intersection(s_exc, s_inst) @difference.register(SomeException, SomeInstance) def difference_Exception_Instance(s_exc, s_inst): classdefs = {c for c in s_exc.classdefs if not c.issubclass(s_inst.classdef)} if classdefs: return SomeException(classdefs) else: return s_ImpossibleValue class SomePBC(SomeObject): """Stands for a global user instance, built prior to the analysis, or a set of such instances.""" immutable = True def __init__(self, descriptions, can_be_None=False, subset_of=None): assert descriptions # descriptions is a set of Desc instances descriptions = set(descriptions) self.descriptions = descriptions self.can_be_None = can_be_None self.subset_of = subset_of self.simplify() knowntype = reduce(commonbase, [x.knowntype for x in descriptions]) if knowntype == type(Exception): knowntype = type if knowntype != object: self.knowntype = knowntype if len(descriptions) == 1 and not can_be_None: # hack for the convenience of direct callers to SomePBC(): # only if there is a single object in descriptions desc, = descriptions if desc.pyobj is not None: self.const = desc.pyobj elif len(descriptions) > 1: from rpython.annotator.classdesc import ClassDesc from rpython.annotator.description import MethodOfFrozenDesc kind = self.getKind() if kind is ClassDesc: # a PBC of several classes: enforce them all to be # built, without support for specialization. See # rpython/test/test_rpbc.test_pbc_of_classes_not_all_used for desc in descriptions: desc.getuniqueclassdef() elif kind is MethodOfFrozenDesc: funcdescs = set(desc.funcdesc for desc in descriptions) if len(funcdescs) > 1: raise AnnotatorError( "You can't mix a set of methods on a frozen PBC in " "RPython that are different underlying functions") def any_description(self): return iter(self.descriptions).next() def getKind(self): "Return the common Desc class of all descriptions in this PBC." kinds = set() for x in self.descriptions: assert type(x).__name__.endswith('Desc') # avoid import nightmares kinds.add(x.__class__) if len(kinds) > 1: raise AnnotatorError("mixing several kinds of PBCs: %r" % kinds) return kinds.pop() def simplify(self): # We check that the set only contains a single kind of Desc instance kind = self.getKind() # then we remove unnecessary entries in self.descriptions: # some MethodDescs can be 'shadowed' by others if len(self.descriptions) > 1: kind.simplify_desc_set(self.descriptions) def consider_call_site(self, args, s_result, call_op): descs = list(self.descriptions) self.getKind().consider_call_site(descs, args, s_result, call_op) def can_be_none(self): return self.can_be_None def nonnoneify(self): return SomePBC(self.descriptions, can_be_None=False, subset_of=self.subset_of) def noneify(self): return SomePBC(self.descriptions, can_be_None=True, subset_of=self.subset_of) def fmt_descriptions(self, pbis): if hasattr(self, 'const'): return None else: return '{...%s...}' % (len(pbis),) def fmt_knowntype(self, kt): if self.is_constant(): return None else: return kt.__name__ class SomeNone(SomeObject): knowntype = type(None) const = None def __init__(self): pass def is_constant(self): return True def is_immutable_constant(self): return True def nonnoneify(self): return s_ImpossibleValue class SomeConstantType(SomePBC): can_be_None = False subset_of = None def __init__(self, x, bk): self.descriptions = set([bk.getdesc(x)]) self.knowntype = type(x) self.const = x class SomeBuiltin(SomeObject): "Stands for a built-in function or method with special-cased analysis." knowntype = BuiltinFunctionType # == BuiltinMethodType immutable = True def __init__(self, analyser, s_self=None, methodname=None): if isinstance(analyser, MethodType): analyser = descriptor.InstanceMethod( analyser.im_func, analyser.im_self, analyser.im_class) self.analyser = analyser self.s_self = s_self self.methodname = methodname def can_be_none(self): return False class SomeBuiltinMethod(SomeBuiltin): """ Stands for a built-in method which has got special meaning """ def __init__(self, analyser, s_self, methodname): if isinstance(analyser, MethodType): analyser = descriptor.InstanceMethod( analyser.im_func, analyser.im_self, analyser.im_class) self.analyser = analyser self.s_self = s_self self.methodname = methodname class SomeImpossibleValue(SomeObject): """The empty set. Instances are placeholders for objects that will never show up at run-time, e.g. elements of an empty list.""" immutable = True annotationcolor = (160, 160, 160) def can_be_none(self): return False class SomeProperty(SomeObject): # used for union error only immutable = True knowntype = type(property) def __init__(self, prop): self.fget = prop.fget self.fset = prop.fset def can_be_none(self): return False s_None = SomeNone() s_Bool = SomeBool() s_True = SomeBool() s_True.const = True s_False = SomeBool() s_False.const = False s_Int = SomeInteger() s_ImpossibleValue = SomeImpossibleValue() s_Str0 = SomeString(no_nul=True) s_Unicode0 = SomeUnicodeString(no_nul=True) # ____________________________________________________________ # weakrefs class SomeWeakRef(SomeObject): knowntype = weakref.ReferenceType immutable = True def __init__(self, classdef): # 'classdef' is None for known-to-be-dead weakrefs. self.classdef = classdef def noneify(self): return SomeWeakRef(self.classdef) # ____________________________________________________________ class AnnotatorError(Exception): def __init__(self, msg=None): self.msg = msg self.source = None def __str__(self): s = "\n\n%s" % self.msg if self.source is not None: s += "\n\n" s += self.source return s class UnionError(AnnotatorError): """Signals an suspicious attempt at taking the union of deeply incompatible SomeXxx instances.""" def __init__(self, s_obj1, s_obj2, msg=None): """ This exception expresses the fact that s_obj1 and s_obj2 cannot be unified. The msg paramter is appended to a generic message. This can be used to give the user a little more information. """ s = "" if msg is not None: s += "%s\n\n" % msg s += "Offending annotations:\n" s += " %s\n %s" % (s_obj1, s_obj2) self.s_obj1 = s_obj1 self.s_obj2 = s_obj2 self.msg = s self.source = None def __repr__(self): return str(self) def union(s1, s2): """The join operation in the lattice of annotations. It is the most precise SomeObject instance that contains both arguments. union() is (supposed to be) idempotent, commutative, associative and has no side-effects. """ try: TLS.no_side_effects_in_union += 1 except AttributeError: TLS.no_side_effects_in_union = 1 try: if s1 == s2: # Most pair(...).union() methods deal incorrectly with that case # when constants are involved. return s1 return pair(s1, s2).union() finally: TLS.no_side_effects_in_union -= 1 def unionof(*somevalues): "The most precise SomeValue instance that contains all the values." try: s1, s2 = somevalues except ValueError: s1 = s_ImpossibleValue for s2 in somevalues: if s1 != s2: s1 = pair(s1, s2).union() else: # See comment in union() above if s1 != s2: s1 = pair(s1, s2).union() return s1 # make knowntypedata dictionary def add_knowntypedata(ktd, truth, vars, s_obj): for v in vars: ktd[truth][v] = s_obj def merge_knowntypedata(ktd1, ktd2): r = defaultdict(dict) for truth, constraints in ktd1.items(): for v in constraints: if truth in ktd2 and v in ktd2[truth]: r[truth][v] = unionof(ktd1[truth][v], ktd2[truth][v]) return r def not_const(s_obj): if s_obj.is_constant() and not isinstance(s_obj, (SomePBC, SomeNone)): new_s_obj = SomeObject.__new__(s_obj.__class__) dic = new_s_obj.__dict__ = s_obj.__dict__.copy() if 'const' in dic: del new_s_obj.const else: del new_s_obj.const_box s_obj = new_s_obj return s_obj # ____________________________________________________________ # internal def commonbase(cls1, cls2): # XXX single inheritance only XXX hum l1 = inspect.getmro(cls1) l2 = inspect.getmro(cls2) if l1[-1] != object: l1 = l1 + (object,) if l2[-1] != object: l2 = l2 + (object,) for x in l1: if x in l2: return x assert 0, "couldn't get to commonbase of %r and %r" % (cls1, cls2) class HarmlesslyBlocked(Exception): """Raised by the unaryop/binaryop to signal a harmless kind of BlockedInference: the current block is blocked, but not in a way that gives 'Blocked block' errors at the end of annotation.""" def read_can_only_throw(opimpl, *args): can_only_throw = getattr(opimpl, "can_only_throw", None) if can_only_throw is None or isinstance(can_only_throw, list): return can_only_throw return can_only_throw(*args) # # safety check that no-one is trying to make annotation and translation # faster by providing the -O option to Python. import os if "WINGDB_PYTHON" not in os.environ: # ...but avoiding this boring check in the IDE try: assert False except AssertionError: pass # fine else: raise RuntimeError("The annotator relies on 'assert' statements from the\n" "\tannotated program: you cannot run it with 'python -O'.")