import math from math import fabs from rpython.rlib.rfloat import asinh, log1p, isfinite from rpython.rlib.constant import DBL_MIN, CM_SCALE_UP, CM_SCALE_DOWN from rpython.rlib.constant import CM_LARGE_DOUBLE, DBL_MANT_DIG from rpython.rlib.constant import M_LN2, M_LN10 from rpython.rlib.constant import CM_SQRT_LARGE_DOUBLE, CM_SQRT_DBL_MIN from rpython.rlib.constant import CM_LOG_LARGE_DOUBLE from rpython.rlib.special_value import special_type, INF, NAN from rpython.rlib.special_value import sqrt_special_values from rpython.rlib.special_value import acos_special_values from rpython.rlib.special_value import acosh_special_values from rpython.rlib.special_value import asinh_special_values from rpython.rlib.special_value import atanh_special_values from rpython.rlib.special_value import log_special_values from rpython.rlib.special_value import exp_special_values from rpython.rlib.special_value import cosh_special_values from rpython.rlib.special_value import sinh_special_values from rpython.rlib.special_value import tanh_special_values from rpython.rlib.special_value import rect_special_values #binary def c_add(x, y): (r1, i1), (r2, i2) = x, y r = r1 + r2 i = i1 + i2 return (r, i) def c_sub(x, y): (r1, i1), (r2, i2) = x, y r = r1 - r2 i = i1 - i2 return (r, i) def c_mul(x, y): (r1, i1), (r2, i2) = x, y r = r1 * r2 - i1 * i2 i = r1 * i2 + i1 * r2 return (r, i) def c_div(x, y): #x/y (r1, i1), (r2, i2) = x, y if r2 < 0: abs_r2 = -r2 else: abs_r2 = r2 if i2 < 0: abs_i2 = -i2 else: abs_i2 = i2 if abs_r2 >= abs_i2: if abs_r2 == 0.0: raise ZeroDivisionError else: ratio = i2 / r2 denom = r2 + i2 * ratio rr = (r1 + i1 * ratio) / denom ir = (i1 - r1 * ratio) / denom elif math.isnan(r2): rr = NAN ir = NAN else: ratio = r2 / i2 denom = r2 * ratio + i2 assert i2 != 0.0 rr = (r1 * ratio + i1) / denom ir = (i1 * ratio - r1) / denom return (rr, ir) def c_pow(x, y): (r1, i1), (r2, i2) = x, y if i1 == 0 and i2 == 0 and r1 > 0: rr = math.pow(r1, r2) ir = 0. elif r2 == 0.0 and i2 == 0.0: rr, ir = 1, 0 elif r1 == 1.0 and i1 == 0.0: rr, ir = (1.0, 0.0) elif r1 == 0.0 and i1 == 0.0: if i2 != 0.0 or r2 < 0.0: raise ZeroDivisionError rr, ir = (0.0, 0.0) else: vabs = math.hypot(r1,i1) len = math.pow(vabs,r2) at = math.atan2(i1,r1) phase = at * r2 if i2 != 0.0: len /= math.exp(at * i2) phase += i2 * math.log(vabs) try: rr = len * math.cos(phase) ir = len * math.sin(phase) except ValueError: rr = NAN ir = NAN return (rr, ir) #unary def c_neg(r, i): return (-r, -i) def c_sqrt(x, y): ''' Method: use symmetries to reduce to the case when x = z.real and y = z.imag are nonnegative. Then the real part of the result is given by s = sqrt((x + hypot(x, y))/2) and the imaginary part is d = (y/2)/s If either x or y is very large then there's a risk of overflow in computation of the expression x + hypot(x, y). We can avoid this by rewriting the formula for s as: s = 2*sqrt(x/8 + hypot(x/8, y/8)) This costs us two extra multiplications/divisions, but avoids the overhead of checking for x and y large. If both x and y are subnormal then hypot(x, y) may also be subnormal, so will lack full precision. We solve this by rescaling x and y by a sufficiently large power of 2 to ensure that x and y are normal. ''' if not isfinite(x) or not isfinite(y): return sqrt_special_values[special_type(x)][special_type(y)] if x == 0. and y == 0.: return (0., y) ax = fabs(x) ay = fabs(y) if ax < DBL_MIN and ay < DBL_MIN and (ax > 0. or ay > 0.): # here we catch cases where hypot(ax, ay) is subnormal ax = math.ldexp(ax, CM_SCALE_UP) ay1= math.ldexp(ay, CM_SCALE_UP) s = math.ldexp(math.sqrt(ax + math.hypot(ax, ay1)), CM_SCALE_DOWN) else: ax /= 8. s = 2.*math.sqrt(ax + math.hypot(ax, ay/8.)) d = ay/(2.*s) if x >= 0.: return (s, math.copysign(d, y)) else: return (d, math.copysign(s, y)) def c_acos(x, y): if not isfinite(x) or not isfinite(y): return acos_special_values[special_type(x)][special_type(y)] if fabs(x) > CM_LARGE_DOUBLE or fabs(y) > CM_LARGE_DOUBLE: # avoid unnecessary overflow for large arguments real = math.atan2(fabs(y), x) # split into cases to make sure that the branch cut has the # correct continuity on systems with unsigned zeros if x < 0.: imag = -math.copysign(math.log(math.hypot(x/2., y/2.)) + M_LN2*2., y) else: imag = math.copysign(math.log(math.hypot(x/2., y/2.)) + M_LN2*2., -y) else: s1x, s1y = c_sqrt(1.-x, -y) s2x, s2y = c_sqrt(1.+x, y) real = 2.*math.atan2(s1x, s2x) imag = asinh(s2x*s1y - s2y*s1x) return (real, imag) def c_acosh(x, y): # XXX the following two lines seem unnecessary at least on Linux; # the tests pass fine without them if not isfinite(x) or not isfinite(y): return acosh_special_values[special_type(x)][special_type(y)] if fabs(x) > CM_LARGE_DOUBLE or fabs(y) > CM_LARGE_DOUBLE: # avoid unnecessary overflow for large arguments real = math.log(math.hypot(x/2., y/2.)) + M_LN2*2. imag = math.atan2(y, x) else: s1x, s1y = c_sqrt(x - 1., y) s2x, s2y = c_sqrt(x + 1., y) real = asinh(s1x*s2x + s1y*s2y) imag = 2.*math.atan2(s1y, s2x) return (real, imag) def c_asin(x, y): # asin(z) = -i asinh(iz) sx, sy = c_asinh(-y, x) return (sy, -sx) def c_asinh(x, y): if not isfinite(x) or not isfinite(y): return asinh_special_values[special_type(x)][special_type(y)] if fabs(x) > CM_LARGE_DOUBLE or fabs(y) > CM_LARGE_DOUBLE: if y >= 0.: real = math.copysign(math.log(math.hypot(x/2., y/2.)) + M_LN2*2., x) else: real = -math.copysign(math.log(math.hypot(x/2., y/2.)) + M_LN2*2., -x) imag = math.atan2(y, fabs(x)) else: s1x, s1y = c_sqrt(1.+y, -x) s2x, s2y = c_sqrt(1.-y, x) real = asinh(s1x*s2y - s2x*s1y) imag = math.atan2(y, s1x*s2x - s1y*s2y) return (real, imag) def c_atan(x, y): # atan(z) = -i atanh(iz) sx, sy = c_atanh(-y, x) return (sy, -sx) def c_atanh(x, y): if not isfinite(x) or not isfinite(y): return atanh_special_values[special_type(x)][special_type(y)] # Reduce to case where x >= 0., using atanh(z) = -atanh(-z). if x < 0.: return c_neg(*c_atanh(*c_neg(x, y))) ay = fabs(y) if x > CM_SQRT_LARGE_DOUBLE or ay > CM_SQRT_LARGE_DOUBLE: # if abs(z) is large then we use the approximation # atanh(z) ~ 1/z +/- i*pi/2 (+/- depending on the sign # of y h = math.hypot(x/2., y/2.) # safe from overflow real = x/4./h/h # the two negations in the next line cancel each other out # except when working with unsigned zeros: they're there to # ensure that the branch cut has the correct continuity on # systems that don't support signed zeros imag = -math.copysign(math.pi/2., -y) elif x == 1. and ay < CM_SQRT_DBL_MIN: # C99 standard says: atanh(1+/-0.) should be inf +/- 0i if ay == 0.: raise ValueError("math domain error") #real = INF #imag = y else: real = -math.log(math.sqrt(ay)/math.sqrt(math.hypot(ay, 2.))) imag = math.copysign(math.atan2(2., -ay) / 2, y) else: real = log1p(4.*x/((1-x)*(1-x) + ay*ay))/4. imag = -math.atan2(-2.*y, (1-x)*(1+x) - ay*ay) / 2. return (real, imag) def c_log(x, y): # The usual formula for the real part is log(hypot(z.real, z.imag)). # There are four situations where this formula is potentially # problematic: # # (1) the absolute value of z is subnormal. Then hypot is subnormal, # so has fewer than the usual number of bits of accuracy, hence may # have large relative error. This then gives a large absolute error # in the log. This can be solved by rescaling z by a suitable power # of 2. # # (2) the absolute value of z is greater than DBL_MAX (e.g. when both # z.real and z.imag are within a factor of 1/sqrt(2) of DBL_MAX) # Again, rescaling solves this. # # (3) the absolute value of z is close to 1. In this case it's # difficult to achieve good accuracy, at least in part because a # change of 1ulp in the real or imaginary part of z can result in a # change of billions of ulps in the correctly rounded answer. # # (4) z = 0. The simplest thing to do here is to call the # floating-point log with an argument of 0, and let its behaviour # (returning -infinity, signaling a floating-point exception, setting # errno, or whatever) determine that of c_log. So the usual formula # is fine here. # XXX the following two lines seem unnecessary at least on Linux; # the tests pass fine without them if not isfinite(x) or not isfinite(y): return log_special_values[special_type(x)][special_type(y)] ax = fabs(x) ay = fabs(y) if ax > CM_LARGE_DOUBLE or ay > CM_LARGE_DOUBLE: real = math.log(math.hypot(ax/2., ay/2.)) + M_LN2 elif ax < DBL_MIN and ay < DBL_MIN: if ax > 0. or ay > 0.: # catch cases where hypot(ax, ay) is subnormal real = math.log(math.hypot(math.ldexp(ax, DBL_MANT_DIG), math.ldexp(ay, DBL_MANT_DIG))) real -= DBL_MANT_DIG*M_LN2 else: # log(+/-0. +/- 0i) raise ValueError("math domain error") #real = -INF #imag = atan2(y, x) else: h = math.hypot(ax, ay) if 0.71 <= h and h <= 1.73: am = max(ax, ay) an = min(ax, ay) real = log1p((am-1)*(am+1) + an*an) / 2. else: real = math.log(h) imag = math.atan2(y, x) return (real, imag) def c_log10(x, y): rx, ry = c_log(x, y) return (rx / M_LN10, ry / M_LN10) def c_exp(x, y): if not isfinite(x) or not isfinite(y): if math.isinf(x) and isfinite(y) and y != 0.: if x > 0: real = math.copysign(INF, math.cos(y)) imag = math.copysign(INF, math.sin(y)) else: real = math.copysign(0., math.cos(y)) imag = math.copysign(0., math.sin(y)) r = (real, imag) else: r = exp_special_values[special_type(x)][special_type(y)] # need to raise ValueError if y is +/- infinity and x is not # a NaN and not -infinity if math.isinf(y) and (isfinite(x) or (math.isinf(x) and x > 0)): raise ValueError("math domain error") return r if x > CM_LOG_LARGE_DOUBLE: l = math.exp(x-1.) real = l * math.cos(y) * math.e imag = l * math.sin(y) * math.e else: l = math.exp(x) real = l * math.cos(y) imag = l * math.sin(y) if math.isinf(real) or math.isinf(imag): raise OverflowError("math range error") return real, imag def c_cosh(x, y): if not isfinite(x) or not isfinite(y): if math.isinf(x) and isfinite(y) and y != 0.: if x > 0: real = math.copysign(INF, math.cos(y)) imag = math.copysign(INF, math.sin(y)) else: real = math.copysign(INF, math.cos(y)) imag = -math.copysign(INF, math.sin(y)) r = (real, imag) else: r = cosh_special_values[special_type(x)][special_type(y)] # need to raise ValueError if y is +/- infinity and x is not # a NaN if math.isinf(y) and not math.isnan(x): raise ValueError("math domain error") return r if fabs(x) > CM_LOG_LARGE_DOUBLE: # deal correctly with cases where cosh(x) overflows but # cosh(z) does not. x_minus_one = x - math.copysign(1., x) real = math.cos(y) * math.cosh(x_minus_one) * math.e imag = math.sin(y) * math.sinh(x_minus_one) * math.e else: real = math.cos(y) * math.cosh(x) imag = math.sin(y) * math.sinh(x) if math.isinf(real) or math.isinf(imag): raise OverflowError("math range error") return real, imag def c_sinh(x, y): # special treatment for sinh(+/-inf + iy) if y is finite and nonzero if not isfinite(x) or not isfinite(y): if math.isinf(x) and isfinite(y) and y != 0.: if x > 0: real = math.copysign(INF, math.cos(y)) imag = math.copysign(INF, math.sin(y)) else: real = -math.copysign(INF, math.cos(y)) imag = math.copysign(INF, math.sin(y)) r = (real, imag) else: r = sinh_special_values[special_type(x)][special_type(y)] # need to raise ValueError if y is +/- infinity and x is not # a NaN if math.isinf(y) and not math.isnan(x): raise ValueError("math domain error") return r if fabs(x) > CM_LOG_LARGE_DOUBLE: x_minus_one = x - math.copysign(1., x) real = math.cos(y) * math.sinh(x_minus_one) * math.e imag = math.sin(y) * math.cosh(x_minus_one) * math.e else: real = math.cos(y) * math.sinh(x) imag = math.sin(y) * math.cosh(x) if math.isinf(real) or math.isinf(imag): raise OverflowError("math range error") return real, imag def c_tanh(x, y): # Formula: # # tanh(x+iy) = (tanh(x)(1+tan(y)^2) + i tan(y)(1-tanh(x))^2) / # (1+tan(y)^2 tanh(x)^2) # # To avoid excessive roundoff error, 1-tanh(x)^2 is better computed # as 1/cosh(x)^2. When abs(x) is large, we approximate 1-tanh(x)^2 # by 4 exp(-2*x) instead, to avoid possible overflow in the # computation of cosh(x). if not isfinite(x) or not isfinite(y): if math.isinf(x) and isfinite(y) and y != 0.: if x > 0: real = 1.0 # vv XXX why is the 2. there? imag = math.copysign(0., 2. * math.sin(y) * math.cos(y)) else: real = -1.0 imag = math.copysign(0., 2. * math.sin(y) * math.cos(y)) r = (real, imag) else: r = tanh_special_values[special_type(x)][special_type(y)] # need to raise ValueError if y is +/-infinity and x is finite if math.isinf(y) and isfinite(x): raise ValueError("math domain error") return r if fabs(x) > CM_LOG_LARGE_DOUBLE: real = math.copysign(1., x) imag = 4. * math.sin(y) * math.cos(y) * math.exp(-2.*fabs(x)) else: tx = math.tanh(x) ty = math.tan(y) cx = 1. / math.cosh(x) txty = tx * ty denom = 1. + txty * txty real = tx * (1. + ty*ty) / denom imag = ((ty / denom) * cx) * cx return real, imag def c_cos(r, i): # cos(z) = cosh(iz) return c_cosh(-i, r) def c_sin(r, i): # sin(z) = -i sinh(iz) sr, si = c_sinh(-i, r) return si, -sr def c_tan(r, i): # tan(z) = -i tanh(iz) sr, si = c_tanh(-i, r) return si, -sr def c_rect(r, phi): if not isfinite(r) or not isfinite(phi): # if r is +/-infinity and phi is finite but nonzero then # result is (+-INF +-INF i), but we need to compute cos(phi) # and sin(phi) to figure out the signs. if math.isinf(r) and isfinite(phi) and phi != 0.: if r > 0: real = math.copysign(INF, math.cos(phi)) imag = math.copysign(INF, math.sin(phi)) else: real = -math.copysign(INF, math.cos(phi)) imag = -math.copysign(INF, math.sin(phi)) z = (real, imag) else: z = rect_special_values[special_type(r)][special_type(phi)] # need to raise ValueError if r is a nonzero number and phi # is infinite if r != 0. and not math.isnan(r) and math.isinf(phi): raise ValueError("math domain error") return z real = r * math.cos(phi) imag = r * math.sin(phi) return real, imag def c_phase(x, y): # Windows screws up atan2 for inf and nan, and alpha Tru64 5.1 doesn't # follow C99 for atan2(0., 0.). if math.isnan(x) or math.isnan(y): return NAN if math.isinf(y): if math.isinf(x): if math.copysign(1., x) == 1.: # atan2(+-inf, +inf) == +-pi/4 return math.copysign(0.25 * math.pi, y) else: # atan2(+-inf, -inf) == +-pi*3/4 return math.copysign(0.75 * math.pi, y) # atan2(+-inf, x) == +-pi/2 for finite x return math.copysign(0.5 * math.pi, y) if math.isinf(x) or y == 0.: if math.copysign(1., x) == 1.: # atan2(+-y, +inf) = atan2(+-0, +x) = +-0. return math.copysign(0., y) else: # atan2(+-y, -inf) = atan2(+-0., -x) = +-pi. return math.copysign(math.pi, y) return math.atan2(y, x) def c_abs(r, i): if not isfinite(r) or not isfinite(i): # C99 rules: if either the real or the imaginary part is an # infinity, return infinity, even if the other part is a NaN. if math.isinf(r): return INF if math.isinf(i): return INF # either the real or imaginary part is a NaN, # and neither is infinite. Result should be NaN. return NAN result = math.hypot(r, i) if not isfinite(result): raise OverflowError("math range error") return result def c_polar(r, i): real = c_abs(r, i) phi = c_phase(r, i) return real, phi def c_isinf(r, i): return math.isinf(r) or math.isinf(i) def c_isnan(r, i): return math.isnan(r) or math.isnan(i) def c_isfinite(r, i): return isfinite(r) and isfinite(i)