1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
|
/* Copyright (C) 2001-2020 Artifex Software, Inc.
All Rights Reserved.
This software is provided AS-IS with no warranty, either express or
implied.
This software is distributed under license and may not be copied,
modified or distributed except as expressly authorized under the terms
of the license contained in the file LICENSE in this distribution.
Refer to licensing information at http://www.artifex.com or contact
Artifex Software, Inc., 1305 Grant Avenue - Suite 200, Novato,
CA 94945, U.S.A., +1(415)492-9861, for further information.
*/
/* gsicc handling for direct color replacement. */
#include "std.h"
#include "string_.h"
#include "stdpre.h"
#include "gstypes.h"
#include "gsmemory.h"
#include "gsstruct.h"
#include "scommon.h"
#include "strmio.h"
#include "gx.h"
#include "gxgstate.h"
#include "gxcspace.h"
#include "gsicc_cms.h"
#include "gsicc_cache.h"
/* A link structure for our replace color transform */
typedef struct rcm_link_s {
byte num_out;
byte num_in;
gsicc_colorbuffer_t data_cs_in;
gs_memory_t *memory;
gx_cm_color_map_procs cm_procs; /* for the demo */
void *context; /* For a table and or a set of procs */
} rcm_link_t;
static void gsicc_rcm_transform_general(gx_device *dev, gsicc_link_t *icclink,
void *inputcolor, void *outputcolor,
int num_bytes_in, int num_bytes_out);
/* Functions that should be optimized later to do planar/chunky with
color conversions. Just putting in something that should work
right now */
static void
gsicc_rcm_planar_to_planar(gx_device *dev, gsicc_link_t *icclink,
gsicc_bufferdesc_t *input_buff_desc,
gsicc_bufferdesc_t *output_buff_desc,
void *inputbuffer, void *outputbuffer)
{
int k, j;
byte *inputpos[4];
byte *outputpos[4];
byte *in_buffer_ptr = (byte *) inputbuffer;
byte *out_buffer_ptr = (byte *) outputbuffer;
byte in_color[4], out_color[4];
for (k = 0; k < input_buff_desc->num_chan; k++) {
inputpos[k] = in_buffer_ptr + k * input_buff_desc->plane_stride;
}
for (k = 0; k < output_buff_desc->num_chan; k++) {
outputpos[k] = out_buffer_ptr + k * output_buff_desc->plane_stride;
}
/* Note to self. We currently only do this in the transparency buffer
case which has byte representation so just stepping through
plane_stride is ok at this time. */
for (k = 0; k < input_buff_desc->plane_stride ; k++) {
for (j = 0; j < input_buff_desc->num_chan; j++) {
in_color[j] = *(inputpos[j]);
inputpos[j] += input_buff_desc->bytes_per_chan;
}
gsicc_rcm_transform_general(dev, icclink, (void*) &(in_color[0]),
(void*) &(out_color[0]), 1, 1);
for (j = 0; j < output_buff_desc->num_chan; j++) {
*(outputpos[j]) = out_color[j];
outputpos[j] += output_buff_desc->bytes_per_chan;
}
}
}
/* This is not really used yet */
static void
gsicc_rcm_planar_to_chunky(gx_device *dev, gsicc_link_t *icclink,
gsicc_bufferdesc_t *input_buff_desc,
gsicc_bufferdesc_t *output_buff_desc,
void *inputbuffer, void *outputbuffer)
{
}
/* This is used with the fast thresholding code when doing -dUseFastColor
and going out to a planar device */
static void
gsicc_rcm_chunky_to_planar(gx_device *dev, gsicc_link_t *icclink,
gsicc_bufferdesc_t *input_buff_desc,
gsicc_bufferdesc_t *output_buff_desc,
void *inputbuffer, void *outputbuffer)
{
int k, j, m;
byte *inputpos = (byte *) inputbuffer;
byte *outputpos = (byte *) outputbuffer;
byte *output_loc;
byte *inputcolor;
byte outputcolor[8]; /* 8 since we have max 4 colorants and 2 bytes/colorant */
unsigned short *pos_in_short, *pos_out_short;
int num_bytes_in = input_buff_desc->bytes_per_chan;
int num_bytes_out = output_buff_desc->bytes_per_chan;
int pixel_in_step = num_bytes_in * input_buff_desc->num_chan;
int plane_stride = output_buff_desc->plane_stride;
/* Do row by row. */
for (k = 0; k < input_buff_desc->num_rows ; k++) {
inputcolor = inputpos;
output_loc = outputpos;
/* split the 2 byte 1 byte case here to avoid decision in inner loop */
if (output_buff_desc->bytes_per_chan == 1) {
for (j = 0; j < input_buff_desc->pixels_per_row; j++) {
gsicc_rcm_transform_general(dev, icclink, (void*) inputcolor,
(void*) &(outputcolor[0]), num_bytes_in,
num_bytes_out);
/* Stuff the output in the proper planar location */
for (m = 0; m < output_buff_desc->num_chan; m++) {
*(output_loc + m * plane_stride + j) = outputcolor[m];
}
inputcolor += pixel_in_step;
}
inputpos += input_buff_desc->row_stride;
outputpos += output_buff_desc->row_stride;
} else {
for (j = 0; j < input_buff_desc->pixels_per_row; j++) {
gsicc_rcm_transform_general(dev, icclink, (void*) inputcolor,
(void*) &(outputcolor[0]), num_bytes_in,
num_bytes_out);
/* Stuff the output in the proper planar location */
pos_in_short = (unsigned short*) &(outputcolor[0]);
pos_out_short = (unsigned short*) (output_loc);
for (m = 0; m < output_buff_desc->num_chan; m++) {
*(pos_out_short + m * plane_stride + j) = pos_in_short[m];
}
inputcolor += pixel_in_step;
}
inputpos += input_buff_desc->row_stride;
outputpos += output_buff_desc->row_stride;
}
}
}
static void
gsicc_rcm_chunky_to_chunky(gx_device *dev, gsicc_link_t *icclink,
gsicc_bufferdesc_t *input_buff_desc,
gsicc_bufferdesc_t *output_buff_desc,
void *inputbuffer, void *outputbuffer)
{
int k, j;
byte *inputpos = (byte *) inputbuffer;
byte *outputpos = (byte *) outputbuffer;
byte *inputcolor, *outputcolor;
int num_bytes_in = input_buff_desc->bytes_per_chan;
int num_bytes_out = output_buff_desc->bytes_per_chan;
int pixel_in_step = num_bytes_in * input_buff_desc->num_chan;
int pixel_out_step = num_bytes_out * output_buff_desc->num_chan;
/* Do row by row. */
for (k = 0; k < input_buff_desc->num_rows ; k++) {
inputcolor = inputpos;
outputcolor = outputpos;
for (j = 0; j < input_buff_desc->pixels_per_row; j++) {
gsicc_rcm_transform_general(dev, icclink, (void*) inputcolor,
(void*) outputcolor, num_bytes_in,
num_bytes_out);
inputcolor += pixel_in_step;
outputcolor += pixel_out_step;
}
inputpos += input_buff_desc->row_stride;
outputpos += output_buff_desc->row_stride;
}
}
/* Transform an entire buffer using replacement method */
static int
gsicc_rcm_transform_color_buffer(gx_device *dev, gsicc_link_t *icclink,
gsicc_bufferdesc_t *input_buff_desc,
gsicc_bufferdesc_t *output_buff_desc,
void *inputbuffer, void *outputbuffer)
{
/* Since we have to do the mappings to and from frac colors we will for
now just call the gsicc_rcm_transform_color as we step through the
buffers. This process can be significantly sped up */
if (input_buff_desc->is_planar) {
if (output_buff_desc->is_planar) {
gsicc_rcm_planar_to_planar(dev, icclink, input_buff_desc,
output_buff_desc, inputbuffer,
outputbuffer);
} else {
gsicc_rcm_planar_to_chunky(dev, icclink, input_buff_desc,
output_buff_desc, inputbuffer,
outputbuffer);
}
} else {
if (output_buff_desc->is_planar) {
gsicc_rcm_chunky_to_planar(dev, icclink, input_buff_desc,
output_buff_desc, inputbuffer,
outputbuffer);
} else {
gsicc_rcm_chunky_to_chunky(dev, icclink, input_buff_desc,
output_buff_desc, inputbuffer,
outputbuffer);
}
}
return 0;
}
/* Shared function between the single and buffer conversions. This is where
we do the actual replacement. For now, we make the replacement a
negative to show the effect of what using color replacement. We also use
the device procs to map to the device value. */
static void
gsicc_rcm_transform_general(gx_device *dev, gsicc_link_t *icclink,
void *inputcolor, void *outputcolor,
int num_bytes_in, int num_bytes_out)
{
/* Input data is either single byte or 2 byte color values. */
rcm_link_t *link = (rcm_link_t*) icclink->link_handle;
byte num_in = link->num_in;
byte num_out = link->num_out;
frac frac_in[4];
frac frac_out[GX_DEVICE_COLOR_MAX_COMPONENTS];
int k;
gx_device *parentmost_dev = subclass_parentmost_device(dev);
/* Make the negative for the demo.... */
if (num_bytes_in == 2) {
unsigned short *data = (unsigned short *) inputcolor;
for (k = 0; k < num_in; k++) {
frac_in[k] = frac_1 - ushort2frac(data[k]);
}
} else {
byte *data = (byte *) inputcolor;
for (k = 0; k < num_in; k++) {
frac_in[k] = frac_1 - byte2frac(data[k]);
}
}
/* Use the device procedure */
switch (num_in) {
case 1:
(link->cm_procs.map_gray)(parentmost_dev, frac_in[0], frac_out);
break;
case 3:
(link->cm_procs.map_rgb)(parentmost_dev, NULL, frac_in[0], frac_in[1],
frac_in[2], frac_out);
break;
case 4:
(link->cm_procs.map_cmyk)(parentmost_dev, frac_in[0], frac_in[1], frac_in[2],
frac_in[3], frac_out);
break;
default:
memset(&(frac_out[0]), 0, sizeof(frac_out));
break;
}
if (num_bytes_out == 2) {
unsigned short *data = (unsigned short *) outputcolor;
for (k = 0; k < num_out; k++) {
data[k] = frac2ushort(frac_out[k]);
}
} else {
byte *data = (byte *) outputcolor;
for (k = 0; k < num_out; k++) {
data[k] = frac2byte(frac_out[k]);
}
}
return;
}
/* Transform a single color using the generic (non color managed)
transformations */
static int
gsicc_rcm_transform_color(gx_device *dev, gsicc_link_t *icclink, void *inputcolor,
void *outputcolor, int num_bytes)
{
gsicc_rcm_transform_general(dev, icclink, inputcolor, outputcolor,
num_bytes, num_bytes);
return 0;
}
static void
gsicc_rcm_freelink(gsicc_link_t *icclink)
{
rcm_link_t *rcm_link = (rcm_link_t*) icclink->link_handle;
if (rcm_link != NULL)
gs_free_object(rcm_link->memory, rcm_link, "gsicc_rcm_freelink");
icclink->link_handle = NULL;
}
/* Get the replacement color management link. It basically needs to store
the number of components for the source so that we know what we are
coming from (e.g. RGB, CMYK, Gray) */
gsicc_link_t*
gsicc_rcm_get_link(const gs_gstate *pgs, gx_device *dev,
gsicc_colorbuffer_t data_cs)
{
gsicc_link_t *result;
gsicc_hashlink_t hash;
rcm_link_t *rcm_link;
gs_memory_t *mem;
const gx_cm_color_map_procs * cm_procs;
bool pageneutralcolor = false;
cmm_dev_profile_t *dev_profile;
int code;
subclass_color_mappings scm;
if (dev == NULL)
return NULL;
mem = dev->memory->non_gc_memory;
/* Need to check if we need to monitor for color */
code = dev_proc(dev, get_profile)(dev, &dev_profile);
if (code < 0)
return NULL;
if (dev_profile != NULL) {
pageneutralcolor = dev_profile->pageneutralcolor;
}
scm = get_color_mapping_procs_subclass(dev);
cm_procs = scm.procs;
hash.rend_hash = gsCMM_REPLACE;
hash.des_hash = dev->color_info.num_components;
hash.src_hash = data_cs;
hash.link_hashcode = data_cs + hash.des_hash * 256 + hash.rend_hash * 4096;
/* Check the cache for a hit. */
result = gsicc_findcachelink(hash, pgs->icc_link_cache, false, false);
if (result != NULL) {
return result;
}
/* If not, then lets create a new one. This may actually return a link if
another thread has already created it while we were trying to do so */
if (gsicc_alloc_link_entry(pgs->icc_link_cache, &result, hash, false, false))
return result;
if (result == NULL)
return result;
/* Now compute the link contents */
/* We (this thread) owns this link, so we can update it */
result->procs.map_buffer = gsicc_rcm_transform_color_buffer;
result->procs.map_color = gsicc_rcm_transform_color;
result->procs.free_link = gsicc_rcm_freelink;
result->hashcode = hash;
result->is_identity = false;
rcm_link = (rcm_link_t *) gs_alloc_bytes(mem, sizeof(rcm_link_t),
"gsicc_rcm_get_link");
if (rcm_link == NULL)
return NULL;
result->link_handle = (void*) rcm_link;
rcm_link->memory = mem;
rcm_link->num_out = min(dev->color_info.num_components,
GS_CLIENT_COLOR_MAX_COMPONENTS);
rcm_link->data_cs_in = data_cs;
rcm_link->cm_procs.map_cmyk = cm_procs->map_cmyk;
rcm_link->cm_procs.map_rgb = cm_procs->map_rgb;
rcm_link->cm_procs.map_gray = cm_procs->map_gray;
switch (data_cs) {
case gsGRAY:
rcm_link->num_in = 1;
break;
case gsRGB:
case gsCIELAB:
rcm_link->num_in = 3;
break;
case gsCMYK:
rcm_link->num_in = 4;
break;
default:
result->procs.free_link(result);
return NULL;
}
/* Likely set if we have something like a table or procs */
rcm_link->context = NULL;
result->num_input = rcm_link->num_in;
result->num_output = rcm_link->num_out;
result->link_handle = rcm_link;
result->hashcode.link_hashcode = hash.link_hashcode;
result->hashcode.des_hash = hash.des_hash;
result->hashcode.src_hash = hash.src_hash;
result->hashcode.rend_hash = hash.rend_hash;
result->includes_softproof = false;
result->includes_devlink = false;
result->is_identity = false; /* Always do replacement for demo */
/* Set up for monitoring non gray color spaces */
if (pageneutralcolor && data_cs != gsGRAY)
gsicc_mcm_set_link(result);
result->valid = true;
/* Now release any tasks/threads waiting for these contents by unlocking it */
gx_monitor_leave(result->lock); /* done with updating, let everyone run */
return result;
}
|