summaryrefslogtreecommitdiff
blob: 58047c9b0693e950ff2da8c6a8bf3a1f69a26d25 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
/* Copyright (C) 2001-2020 Artifex Software, Inc.
   All Rights Reserved.

   This software is provided AS-IS with no warranty, either express or
   implied.

   This software is distributed under license and may not be copied,
   modified or distributed except as expressly authorized under the terms
   of the license contained in the file LICENSE in this distribution.

   Refer to licensing information at http://www.artifex.com or contact
   Artifex Software, Inc.,  1305 Grant Avenue - Suite 200, Novato,
   CA 94945, U.S.A., +1(415)492-9861, for further information.
*/


/* C heap allocator */
#include "malloc_.h"
#include "gdebug.h"
#include "gserrors.h"
#include "gstypes.h"
#include "gsmemory.h"
#include "gsmdebug.h"
#include "gsstruct.h"		/* for st_bytes */
#include "gsmalloc.h"
#include "gsmemret.h"		/* retrying wrapper */

/* ------ Heap allocator ------ */

/*
 * An implementation of Ghostscript's memory manager interface
 * that works directly with the C heap.  We keep track of all allocated
 * blocks so we can free them at cleanup time.
 */
/* Raw memory procedures */
static gs_memory_proc_alloc_bytes(gs_heap_alloc_bytes);
static gs_memory_proc_resize_object(gs_heap_resize_object);
static gs_memory_proc_free_object(gs_heap_free_object);
static gs_memory_proc_stable(gs_heap_stable);
static gs_memory_proc_status(gs_heap_status);
static gs_memory_proc_free_all(gs_heap_free_all);

/* Object memory procedures */
static gs_memory_proc_alloc_struct(gs_heap_alloc_struct);
static gs_memory_proc_alloc_byte_array(gs_heap_alloc_byte_array);
static gs_memory_proc_alloc_struct_array(gs_heap_alloc_struct_array);
static gs_memory_proc_object_size(gs_heap_object_size);
static gs_memory_proc_object_type(gs_heap_object_type);
static gs_memory_proc_alloc_string(gs_heap_alloc_string);
static gs_memory_proc_resize_string(gs_heap_resize_string);
static gs_memory_proc_free_string(gs_heap_free_string);
static gs_memory_proc_register_root(gs_heap_register_root);
static gs_memory_proc_unregister_root(gs_heap_unregister_root);
static gs_memory_proc_enable_free(gs_heap_enable_free);
static gs_memory_proc_set_object_type(gs_heap_set_object_type);
static gs_memory_proc_defer_frees(gs_heap_defer_frees);
static const gs_memory_procs_t gs_malloc_memory_procs =
{
    /* Raw memory procedures */
    gs_heap_alloc_bytes,
    gs_heap_resize_object,
    gs_heap_free_object,
    gs_heap_stable,
    gs_heap_status,
    gs_heap_free_all,
    gs_ignore_consolidate_free,
    /* Object memory procedures */
    gs_heap_alloc_bytes,
    gs_heap_alloc_struct,
    gs_heap_alloc_struct,
    gs_heap_alloc_byte_array,
    gs_heap_alloc_byte_array,
    gs_heap_alloc_struct_array,
    gs_heap_alloc_struct_array,
    gs_heap_object_size,
    gs_heap_object_type,
    gs_heap_alloc_string,
    gs_heap_alloc_string,
    gs_heap_resize_string,
    gs_heap_free_string,
    gs_heap_register_root,
    gs_heap_unregister_root,
    gs_heap_enable_free,
    gs_heap_set_object_type,
    gs_heap_defer_frees
};

/* We must make sure that malloc_blocks leave the block aligned. */
/*typedef struct gs_malloc_block_s gs_malloc_block_t; */
#define malloc_block_data\
        gs_malloc_block_t *next;\
        gs_malloc_block_t *prev;\
        size_t size;\
        gs_memory_type_ptr_t type;\
        client_name_t cname
struct malloc_block_data_s {
    malloc_block_data;
};
struct gs_malloc_block_s {
    malloc_block_data;
/* ANSI C does not allow zero-size arrays, so we need the following */
/* unnecessary and wasteful workaround: */
#define _npad (-size_of(struct malloc_block_data_s) & (ARCH_ALIGN_MEMORY_MOD - 1))
    byte _pad[(_npad == 0 ? ARCH_ALIGN_MEMORY_MOD : _npad)];
#undef _npad
};

/* Initialize a malloc allocator. */
static long heap_available(void);
gs_malloc_memory_t *
gs_malloc_memory_init(void)
{
    gs_malloc_memory_t *mem =
        (gs_malloc_memory_t *)Memento_label(malloc(sizeof(gs_malloc_memory_t)), "gs_malloc_memory_t");

    if (mem == NULL)
        return NULL;

    mem->stable_memory = 0;	/* just for tidyness, never referenced */
    mem->procs = gs_malloc_memory_procs;
    mem->allocated = 0;
    mem->limit = max_size_t;
    mem->used = 0;
    mem->max_used = 0;
    mem->gs_lib_ctx = 0;
    mem->non_gc_memory = (gs_memory_t *)mem;
    mem->thread_safe_memory = (gs_memory_t *)mem;	/* this allocator is thread safe */
    /* Allocate a monitor to serialize access to structures within */
    mem->monitor = NULL;	/* prevent use during initial allocation */
    mem->monitor = gx_monitor_label(gx_monitor_alloc((gs_memory_t *)mem), "heap");
    if (mem->monitor == NULL) {
        free(mem);
        return NULL;
    }

    return mem;
}
/*
 * Estimate the amount of available memory by probing with mallocs.
 * We may under-estimate by a lot, but that's better than winding up with
 * a seriously inflated address space.  This is quite a hack!
 */
#define max_malloc_probes 20
#define malloc_probe_size 64000
static long
heap_available()
{
    long avail = 0;
    void *probes[max_malloc_probes];
    uint n;

    for (n = 0; n < max_malloc_probes; n++) {
        if ((probes[n] = malloc(malloc_probe_size)) == 0)
            break;
        if_debug2('a', "[a]heap_available probe[%d]="PRI_INTPTR"\n",
                  n, (intptr_t) probes[n]);
        avail += malloc_probe_size;
    }
    while (n)
        free(probes[--n]);
    return avail;
}

/* Allocate various kinds of blocks. */
static byte *
gs_heap_alloc_bytes(gs_memory_t * mem, size_t size, client_name_t cname)
{
    gs_malloc_memory_t *mmem = (gs_malloc_memory_t *) mem;
    byte *ptr = 0;

#ifdef DEBUG
    const char *msg;
    static const char *const ok_msg = "OK";

#  define set_msg(str) (msg = (str))
#else
#  define set_msg(str) DO_NOTHING
#endif

        /* Exclusive acces so our decisions and changes are 'atomic' */
    if (mmem->monitor)
        gx_monitor_enter(mmem->monitor);
    if (size > mmem->limit - sizeof(gs_malloc_block_t)) {
        /* Definitely too large to allocate; also avoids overflow. */
        set_msg("exceeded limit");
    } else {
        size_t added = size + sizeof(gs_malloc_block_t);

        if (added <= size || added > mmem->limit || mmem->limit - added < mmem->used)
            set_msg("exceeded limit");
        else if ((ptr = (byte *) Memento_label(malloc(added), cname)) == 0)
            set_msg("failed");
        else {
            gs_malloc_block_t *bp = (gs_malloc_block_t *) ptr;

            /*
             * We would like to check that malloc aligns blocks at least as
             * strictly as the compiler (as defined by ARCH_ALIGN_MEMORY_MOD).
             * However, Microsoft VC 6 does not satisfy this requirement.
             * See gsmemory.h for more explanation.
             */
            set_msg(ok_msg);
            if (mmem->allocated)
                mmem->allocated->prev = bp;
            bp->next = mmem->allocated;
            bp->prev = 0;
            bp->size = size;
            bp->type = &st_bytes;
            bp->cname = cname;
            mmem->allocated = bp;
            ptr = (byte *) (bp + 1);
            mmem->used += size + sizeof(gs_malloc_block_t);
            if (mmem->used > mmem->max_used)
                mmem->max_used = mmem->used;
        }
    }
    if (mmem->monitor)
        gx_monitor_leave(mmem->monitor);	/* Done with exclusive access */
    /* We don't want to 'fill' under mutex to keep the window smaller */
    if (ptr)
        gs_alloc_fill(ptr, gs_alloc_fill_alloc, size);
#ifdef DEBUG
    if (gs_debug_c('a') || msg != ok_msg)
        dmlprintf6(mem, "[a+]gs_malloc(%s)(%"PRIuSIZE") = "PRI_INTPTR": %s, used=%"PRIuSIZE", max=%"PRIuSIZE"\n",
                   client_name_string(cname), size, (intptr_t)ptr, msg, mmem->used, mmem->max_used);
#endif
    return ptr;
#undef set_msg
}
static void *
gs_heap_alloc_struct(gs_memory_t * mem, gs_memory_type_ptr_t pstype,
                     client_name_t cname)
{
    void *ptr =
    gs_heap_alloc_bytes(mem, gs_struct_type_size(pstype), cname);

    if (ptr == 0)
        return 0;
    ((gs_malloc_block_t *) ptr)[-1].type = pstype;
    return ptr;
}
static byte *
gs_heap_alloc_byte_array(gs_memory_t * mem, size_t num_elements, size_t elt_size,
                         client_name_t cname)
{
    size_t lsize = (size_t) num_elements * elt_size;

    if (elt_size != 0 && lsize/elt_size != num_elements)
        return 0;
    return gs_heap_alloc_bytes(mem, (size_t) lsize, cname);
}
static void *
gs_heap_alloc_struct_array(gs_memory_t * mem, size_t num_elements,
                           gs_memory_type_ptr_t pstype, client_name_t cname)
{
    void *ptr =
    gs_heap_alloc_byte_array(mem, num_elements,
                             gs_struct_type_size(pstype), cname);

    if (ptr == 0)
        return 0;
    ((gs_malloc_block_t *) ptr)[-1].type = pstype;
    return ptr;
}
static void *
gs_heap_resize_object(gs_memory_t * mem, void *obj, size_t new_num_elements,
                      client_name_t cname)
{
    gs_malloc_memory_t *mmem = (gs_malloc_memory_t *) mem;
    gs_malloc_block_t *ptr = (gs_malloc_block_t *) obj - 1;
    gs_memory_type_ptr_t pstype = ptr->type;
    size_t old_size = gs_object_size(mem, obj) + sizeof(gs_malloc_block_t);
    size_t new_size =
        gs_struct_type_size(pstype) * new_num_elements +
        sizeof(gs_malloc_block_t);
    gs_malloc_block_t *new_ptr;

    if (new_size == old_size)
        return obj;
    if (mmem->monitor)
        gx_monitor_enter(mmem->monitor);	/* Exclusive access */
    if (new_size > mmem->limit - sizeof(gs_malloc_block_t)) {
        /* too large to allocate; also avoids overflow. */
        if (mmem->monitor)
            gx_monitor_leave(mmem->monitor);	/* Done with exclusive access */
        return 0;
    }
    new_ptr = (gs_malloc_block_t *) gs_realloc(ptr, old_size, new_size);
    if (new_ptr == 0) {
        if (mmem->monitor)
            gx_monitor_leave(mmem->monitor);	/* Done with exclusive access */
        return 0;
    }
    if (new_ptr->prev)
        new_ptr->prev->next = new_ptr;
    else
        mmem->allocated = new_ptr;
    if (new_ptr->next)
        new_ptr->next->prev = new_ptr;
    new_ptr->size = new_size - sizeof(gs_malloc_block_t);
    mmem->used -= old_size;
    mmem->used += new_size;
    if (mmem->monitor)
        gx_monitor_leave(mmem->monitor);	/* Done with exclusive access */
    if (new_size > old_size)
        gs_alloc_fill((byte *) new_ptr + old_size,
                      gs_alloc_fill_alloc, new_size - old_size);
    return new_ptr + 1;
}
static size_t
gs_heap_object_size(gs_memory_t * mem, const void *ptr)
{
    return ((const gs_malloc_block_t *)ptr)[-1].size;
}
static gs_memory_type_ptr_t
gs_heap_object_type(const gs_memory_t * mem, const void *ptr)
{
    return ((const gs_malloc_block_t *)ptr)[-1].type;
}
static void
gs_heap_free_object(gs_memory_t * mem, void *ptr, client_name_t cname)
{
    gs_malloc_memory_t *mmem = (gs_malloc_memory_t *) mem;
    gs_malloc_block_t *bp;
    gs_memory_type_ptr_t pstype;
    struct_proc_finalize((*finalize));

    if_debug3m('a', mem, "[a-]gs_free(%s) "PRI_INTPTR"(%"PRIuSIZE")\n",
               client_name_string(cname), (intptr_t)ptr,
               (ptr == 0 ? 0 : ((gs_malloc_block_t *) ptr)[-1].size));
    if (ptr == 0)
        return;
    pstype = ((gs_malloc_block_t *) ptr)[-1].type;
    finalize = pstype->finalize;
    if (finalize != 0) {
        if_debug3m('u', mem, "[u]finalizing %s "PRI_INTPTR" (%s)\n",
                   struct_type_name_string(pstype),
                   (intptr_t)ptr, client_name_string(cname));
        (*finalize) (mem, ptr);
    }
    if (mmem->monitor)
        gx_monitor_enter(mmem->monitor);	/* Exclusive access */
    /* Previously, we used to search through every allocated block to find
     * the block we are freeing. This gives us safety in that an attempt to
     * free an unallocated block will not go wrong. This does radically
     * slow down frees though, so we replace it with this simpler code; we
     * now assume that the block is valid, and hence avoid the search.
     */
#if 1
    bp = &((gs_malloc_block_t *)ptr)[-1];
    if (bp->prev)
        bp->prev->next = bp->next;
    if (bp->next)
        bp->next->prev = bp->prev;
    if (bp == mmem->allocated) {
        mmem->allocated = bp->next;
        if (mmem->allocated)
            mmem->allocated->prev = NULL;
    }
    mmem->used -= bp->size + sizeof(gs_malloc_block_t);
    if (mmem->monitor)
        gx_monitor_leave(mmem->monitor);	/* Done with exclusive access */
    gs_alloc_fill(bp, gs_alloc_fill_free,
                  bp->size + sizeof(gs_malloc_block_t));
    free(bp);
#else
    bp = mmem->allocated; /* If 'finalize' releases a memory,
                             this function could be called recursively and
                             change mmem->allocated. */
    if (ptr == bp + 1) {
        mmem->allocated = bp->next;
        mmem->used -= bp->size + sizeof(gs_malloc_block_t);

        if (mmem->allocated)
            mmem->allocated->prev = 0;
        if (mmem->monitor)
            gx_monitor_leave(mmem->monitor);	/* Done with exclusive access */
        gs_alloc_fill(bp, gs_alloc_fill_free,
                      bp->size + sizeof(gs_malloc_block_t));
        free(bp);
    } else {
        gs_malloc_block_t *np;

        /*
         * bp == 0 at this point is an error, but we'd rather have an
         * error message than an invalid access.
         */
        if (bp) {
            for (; (np = bp->next) != 0; bp = np) {
                if (ptr == np + 1) {
                    bp->next = np->next;
                    if (np->next)
                        np->next->prev = bp;
                    mmem->used -= np->size + sizeof(gs_malloc_block_t);
                    if (mmem->monitor)
                        gx_monitor_leave(mmem->monitor);	/* Done with exclusive access */
                    gs_alloc_fill(np, gs_alloc_fill_free,
                                  np->size + sizeof(gs_malloc_block_t));
                    free(np);
                    return;
                }
            }
        }
        if (mmem->monitor)
            gx_monitor_leave(mmem->monitor);	/* Done with exclusive access */
        lprintf2("%s: free "PRI_INTPTR" not found!\n",
                 client_name_string(cname), (intptr_t) ptr);
        free((char *)((gs_malloc_block_t *) ptr - 1));
    }
#endif
}
static byte *
gs_heap_alloc_string(gs_memory_t * mem, size_t nbytes, client_name_t cname)
{
    return gs_heap_alloc_bytes(mem, nbytes, cname);
}
static byte *
gs_heap_resize_string(gs_memory_t * mem, byte * data, size_t old_num, size_t new_num,
                      client_name_t cname)
{
    if (gs_heap_object_type(mem, data) != &st_bytes)
        lprintf2("%s: resizing non-string "PRI_INTPTR"!\n",
                 client_name_string(cname), (intptr_t)data);
    return gs_heap_resize_object(mem, data, new_num, cname);
}
static void
gs_heap_free_string(gs_memory_t * mem, byte * data, size_t nbytes,
                    client_name_t cname)
{
    /****** SHOULD CHECK SIZE IF DEBUGGING ******/
    gs_heap_free_object(mem, data, cname);
}
static int
gs_heap_register_root(gs_memory_t * mem, gs_gc_root_t ** rp,
                      gs_ptr_type_t ptype, void **up, client_name_t cname)
{
    return 0;
}
static void
gs_heap_unregister_root(gs_memory_t * mem, gs_gc_root_t * rp,
                        client_name_t cname)
{
}
static gs_memory_t *
gs_heap_stable(gs_memory_t *mem)
{
    return mem;			/* heap memory is stable */
}

/*
 * NB: In a multi-threaded application, this is only a 'snapshot'
 *     since other threads may change the heap_status. The heap_available()
 *     probe is just an approximation anyway.
 */
static void
gs_heap_status(gs_memory_t * mem, gs_memory_status_t * pstat)
{
    gs_malloc_memory_t *mmem = (gs_malloc_memory_t *) mem;

    pstat->allocated = mmem->used + heap_available();
    pstat->used = mmem->used;
    pstat->max_used = mmem->max_used;
    pstat->is_thread_safe = true;	/* this allocator has a mutex (monitor) and IS thread safe */
}
static void
gs_heap_enable_free(gs_memory_t * mem, bool enable)
{
    if (enable)
        mem->procs.free_object = gs_heap_free_object,
            mem->procs.free_string = gs_heap_free_string;
    else
        mem->procs.free_object = gs_ignore_free_object,
            mem->procs.free_string = gs_ignore_free_string;
}

static void gs_heap_set_object_type(gs_memory_t *mem, void *ptr, gs_memory_type_ptr_t type)
{
    gs_malloc_block_t *bp = (gs_malloc_block_t *) ptr;

    if (ptr == 0)
        return;
    bp[-1].type = type;
}

static void gs_heap_defer_frees(gs_memory_t *mem, int defer)
{
}

/* Release all memory acquired by this allocator. */
static void
gs_heap_free_all(gs_memory_t * mem, uint free_mask, client_name_t cname)
{
    gs_malloc_memory_t *const mmem = (gs_malloc_memory_t *) mem;
    gx_monitor_t *mon = mmem->monitor;

    /*
     * We don't perform locking during this process since the 'monitor'
     * is contained in this allocator, and will get freed along the way.
     * It is only called at exit, and there better not be any threads
     * accessing this allocator.
     */
    mmem->monitor = NULL; 	/* delete reference to this monitor */
    gx_monitor_free(mon);	/* free the monitor */
#ifndef MEMENTO
    /* Normally gs calls this on closedown, and it frees every block that
     * has ever been allocated. This is not helpful for leak checking. */
    if (free_mask & FREE_ALL_DATA) {
        gs_malloc_block_t *bp = mmem->allocated;
        gs_malloc_block_t *np;

        for (; bp != 0; bp = np) {
            np = bp->next;
            if_debug3m('a', mem, "[a]gs_heap_free_all(%s) "PRI_INTPTR"(%"PRIuSIZE")\n",
                       client_name_string(bp->cname), (intptr_t)(bp + 1),
                       bp->size);
            gs_alloc_fill(bp + 1, gs_alloc_fill_free, bp->size);
            free(bp);
        }
    }
#endif
    if (free_mask & FREE_ALL_ALLOCATOR)
        free(mem);
}

/* ------ Wrapping ------ */

/* Create the retrying and the locked wrapper for the heap allocator. */
int
gs_malloc_wrap(gs_memory_t **wrapped, gs_malloc_memory_t *contents)
{
#  ifdef USE_RETRY_MEMORY_WRAPPER
    /*
     * This is deprecated since 'retry' for clist reversion/cycling
     * will ONLY work for monochrome, simple PS or PCL, not for a
     * color device and not for PDF or XPS with transparency
     */
    {
        gs_memory_retrying_t *rmem;
        rmem = (gs_memory_retrying_t *)
            gs_alloc_bytes_immovable((gs_memory_t *)lmem,
                                     sizeof(gs_memory_retrying_t),
                                     "gs_malloc_wrap(retrying)");
        if (rmem == 0) {
            gs_free_object(cmem, lmem, "gs_malloc_wrap(locked)");
            return_error(gs_error_VMerror);
        }
        code = gs_memory_retrying_init(rmem, (gs_memory_t *)lmem);
        if (code < 0) {
            gs_free_object((gs_memory_t *)lmem, rmem, "gs_malloc_wrap(retrying)");
            gs_free_object(cmem, lmem, "gs_malloc_wrap(locked)");
            return code;
        }

        *wrapped = (gs_memory_t *)rmem;
    }
#  endif /* retrying */
    return 0;
}

/* Get the wrapped contents. */
gs_malloc_memory_t *
gs_malloc_wrapped_contents(gs_memory_t *wrapped)
{
#ifdef USE_RETRY_MEMORY_WRAPPER
    gs_memory_retrying_t *rmem = (gs_memory_retrying_t *)wrapped;

    return (gs_malloc_memory_t *)gs_memory_retrying_target(rmem);
#else /* retrying */
    return (gs_malloc_memory_t *)wrapped;
#endif /* retrying */
}

/* Free the wrapper, and return the wrapped contents. */
gs_malloc_memory_t *
gs_malloc_unwrap(gs_memory_t *wrapped)
{
#ifdef USE_RETRY_MEMORY_WRAPPER
    gs_memory_retrying_t *rmem = (gs_memory_retrying_t *)wrapped;
    gs_memory_t *contents = gs_memory_retrying_target(rmem);

    gs_free_object(wrapped rmem, "gs_malloc_unwrap(retrying)");
    return (gs_malloc_memory_t *)contents;
#else
    return (gs_malloc_memory_t *)wrapped;
#endif
}

/* Create the default allocator, and return it. */
gs_memory_t *
gs_malloc_init(void)
{
    return gs_malloc_init_with_context(NULL);
}

gs_memory_t *
gs_malloc_init_with_context(gs_lib_ctx_t *ctx)
{
    gs_malloc_memory_t *malloc_memory_default = gs_malloc_memory_init();
    gs_memory_t *memory_t_default;

    if (malloc_memory_default == NULL)
        return NULL;

    if (gs_lib_ctx_init(ctx, (gs_memory_t *)malloc_memory_default) != 0) {
        gs_malloc_release((gs_memory_t *)malloc_memory_default);
        return NULL;
    }

#if defined(USE_RETRY_MEMORY_WRAPPER)
    gs_malloc_wrap(&memory_t_default, malloc_memory_default);
#else
    memory_t_default = (gs_memory_t *)malloc_memory_default;
#endif
    memory_t_default->stable_memory = memory_t_default;
    return memory_t_default;
}

/* Release the default allocator. */
void
gs_malloc_release(gs_memory_t *mem)
{
    gs_malloc_memory_t * malloc_memory_default;

    if (mem == NULL)
        return;

#ifdef USE_RETRY_MEMORY_WRAPPER
    malloc_memory_default = gs_malloc_unwrap(mem);
#else
    malloc_memory_default = (gs_malloc_memory_t *)mem;
#endif
    gs_lib_ctx_fin((gs_memory_t *)malloc_memory_default);

    gs_malloc_memory_release(malloc_memory_default);
}