1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
|
/* Copyright (C) 2001-2019 Artifex Software, Inc.
All Rights Reserved.
This software is provided AS-IS with no warranty, either express or
implied.
This software is distributed under license and may not be copied,
modified or distributed except as expressly authorized under the terms
of the license contained in the file LICENSE in this distribution.
Refer to licensing information at http://www.artifex.com or contact
Artifex Software, Inc., 1305 Grant Avenue - Suite 200, Novato,
CA 94945, U.S.A., +1(415)492-9861, for further information.
*/
/* Path tracing procedures for Ghostscript library */
#include "math_.h"
#include "gx.h"
#include "gserrors.h"
#include "gspath.h" /* for gs_path_enum_alloc prototype */
#include "gsstruct.h"
#include "gxfixed.h"
#include "gxarith.h"
#include "gzpath.h"
/* Define the enumeration structure. */
public_st_path_enum();
/* Read the current point of a path. */
int
gx_path_current_point(const gx_path * ppath, gs_fixed_point * ppt)
{
if (!path_position_valid(ppath))
return_error(gs_error_nocurrentpoint);
/* Copying the coordinates individually */
/* is much faster on a PC, and almost as fast on other machines.... */
ppt->x = ppath->position.x, ppt->y = ppath->position.y;
return 0;
}
/* Read the start point of the current subpath. */
int
gx_path_subpath_start_point(const gx_path * ppath, gs_fixed_point * ppt)
{
const subpath *psub = ppath->current_subpath;
if (!psub)
return_error(gs_error_nocurrentpoint);
*ppt = psub->pt;
return 0;
}
/* Read the bounding box of a path. */
/* Note that if the last element of the path is a moveto, */
/* the bounding box does not include this point, */
/* unless this is the only element of the path. */
int
gx_path_bbox(gx_path * ppath, gs_fixed_rect * pbox)
{
if (ppath == NULL) {
return_error(gs_error_unknownerror) ;
}
if (ppath->bbox_accurate) {
/* The bounding box was set by setbbox. */
*pbox = ppath->bbox;
return 0;
}
if (ppath->first_subpath == 0) {
/* The path is empty, use the current point if any. */
int code = gx_path_current_point(ppath, &pbox->p);
if (code < 0) {
/*
* Don't return garbage, in case the caller doesn't
* check the return code.
*/
pbox->p.x = pbox->p.y = 0;
}
pbox->q = pbox->p;
return code;
}
/* The stored bounding box may not be up to date. */
/* Correct it now if necessary. */
if (ppath->box_last == ppath->current_subpath->last) {
/* Box is up to date */
*pbox = ppath->bbox;
} else {
fixed px, py, qx, qy;
const segment *pseg = ppath->box_last;
if (pseg == 0) { /* box is uninitialized */
pseg = (const segment *)ppath->first_subpath;
px = qx = pseg->pt.x;
py = qy = pseg->pt.y;
} else {
px = ppath->bbox.p.x, py = ppath->bbox.p.y;
qx = ppath->bbox.q.x, qy = ppath->bbox.q.y;
}
/* Macro for adjusting the bounding box when adding a point */
#define ADJUST_BBOX(pt)\
if ((pt).x < px) px = (pt).x;\
else if ((pt).x > qx) qx = (pt).x;\
if ((pt).y < py) py = (pt).y;\
else if ((pt).y > qy) qy = (pt).y
while ((pseg = pseg->next) != 0) {
switch (pseg->type) {
case s_curve:
ADJUST_BBOX(((const curve_segment *)pseg)->p1);
ADJUST_BBOX(((const curve_segment *)pseg)->p2);
/* falls through */
default:
ADJUST_BBOX(pseg->pt);
}
}
#undef ADJUST_BBOX
#define STORE_BBOX(b)\
(b).p.x = px, (b).p.y = py, (b).q.x = qx, (b).q.y = qy;
STORE_BBOX(*pbox);
STORE_BBOX(ppath->bbox);
#undef STORE_BBOX
ppath->box_last = ppath->current_subpath->last;
}
return 0;
}
/* A variation of gs_path_bbox, to be used by the patbbox operator */
int
gx_path_bbox_set(gx_path * ppath, gs_fixed_rect * pbox)
{
if (ppath->bbox_set) {
/* The bounding box was set by setbbox. */
*pbox = ppath->bbox;
return 0;
} else
return gx_path_bbox(ppath, pbox);
}
/* Test if a path has any curves. */
#undef gx_path_has_curves
bool
gx_path_has_curves(const gx_path * ppath)
{
return gx_path_has_curves_inline(ppath);
}
#define gx_path_has_curves(ppath)\
gx_path_has_curves_inline(ppath)
/* Test if a path has no segments. */
#undef gx_path_is_void
bool
gx_path_is_void(const gx_path * ppath)
{
return gx_path_is_void_inline(ppath);
}
#define gx_path_is_void(ppath)\
gx_path_is_void_inline(ppath)
/* Test if a path has no elements at all. */
bool
gx_path_is_null(const gx_path * ppath)
{
return gx_path_is_null_inline(ppath);
}
/*
* Test if a subpath is a rectangle; if so, return its bounding box
* and the start of the next subpath.
* Note that this must recognize:
* ordinary closed rectangles (M, L, L, L, C);
* open rectangles (M, L, L, L);
* rectangles closed with lineto (Mo, L, L, L, Lo);
* rectangles closed with *both* lineto and closepath (bad PostScript,
* but unfortunately not rare) (Mo, L, L, L, Lo, C).
*/
gx_path_rectangular_type
gx_subpath_is_rectangular(const subpath * pseg0, gs_fixed_rect * pbox,
const subpath ** ppnext)
{
const segment *pseg1, *pseg2, *pseg3, *pseg4;
gx_path_rectangular_type type = prt_none;
fixed x0 = pseg0->pt.x, y0 = pseg0->pt.y;
fixed x1, y1, x2, y2, x3, y3;
pseg1 = (const segment *)pseg0;
do {
pseg1 = pseg1->next;
if (pseg1 == NULL)
return prt_none;
x1 = pseg1->pt.x;
y1 = pseg1->pt.y;
if (pseg1->type == s_curve) {
if (gx_curve_is_really_point(x0, y0, pseg1))
continue; /* Ignore this one and try again */
if (gx_curve_is_really_line(x0, y0, pseg1))
break; /* That'll do! */
return prt_none;
} else if (pseg1->type != s_line && pseg1->type != s_gap)
return prt_none;
} while (x1 == x0 && y1 == y0);
pseg2 = pseg1;
do {
pseg2 = pseg2->next;
if (pseg2 == NULL)
return prt_none;
x2 = pseg2->pt.x;
y2 = pseg2->pt.y;
if (pseg2->type == s_curve) {
if (gx_curve_is_really_point(x1, y1, pseg2))
continue; /* Ignore this one and try again */
if (gx_curve_is_really_line(x1, y1, pseg2))
break; /* That'll do! */
return prt_none;
} else if (pseg2->type != s_line && pseg2->type != s_gap)
return prt_none;
} while (x2 == x1 && y2 == y1);
pseg3 = pseg2;
do {
pseg3 = pseg3->next;
if (pseg3 == NULL)
return prt_none;
x3 = pseg3->pt.x;
y3 = pseg3->pt.y;
if (pseg3->type == s_curve) {
if (gx_curve_is_really_point(x2, y2, pseg3))
continue; /* Ignore this one and try again */
if (gx_curve_is_really_line(x2, y2, pseg3))
break; /* That'll do! */
return prt_none;
} else if (pseg3->type != s_line && pseg3->type != s_gap)
return prt_none;
} while (x3 == x2 && y3 == y2);
pseg4 = pseg3;
do {
pseg4 = pseg4->next;
if (pseg4 == NULL || pseg4->type == s_start) {
type = prt_open; /* M, L, L, L */
goto type_known;
}
if (pseg4->type == s_curve) {
if (gx_curve_is_really_point(x3, y3, pseg4))
continue; /* Ignore this one and try again */
if (gx_curve_is_really_line(x3, y3, pseg4))
break; /* That'll do! */
return prt_none;
} else if (pseg4->type == s_line_close) {
type = prt_closed; /* M, L, L, L, C */
goto type_known;
}
} while (pseg4->pt.x == x3 && pseg4->pt.y == y3);
if (pseg4->pt.x != pseg0->pt.x || pseg4->pt.y != pseg0->pt.y)
return prt_none;
else if (pseg4->next == NULL || pseg4->next->type == s_start)
type = prt_fake_closed; /* Mo, L, L, L, L, Mo */
else
return prt_none;
type_known:
if ((x0 == x1 && y1 == y2 && x2 == x3 && y3 == y0) ||
(x0 == x3 && y3 == y2 && x2 == x1 && y1 == y0)) {
/* Path is a rectangle. Return the bounding box. */
if (x0 < x2)
pbox->p.x = x0, pbox->q.x = x2;
else
pbox->p.x = x2, pbox->q.x = x0;
if (y0 < y2)
pbox->p.y = y0, pbox->q.y = y2;
else
pbox->p.y = y2, pbox->q.y = y0;
while (pseg4 != 0 && pseg4->type != s_start)
pseg4 = pseg4->next;
*ppnext = (const subpath *)pseg4;
return type;
}
return prt_none;
}
/* Test if an entire path to be filled is a rectangle. */
gx_path_rectangular_type
gx_path_is_rectangular(const gx_path * ppath, gs_fixed_rect * pbox)
{
const subpath *pnext;
return
(gx_path_subpath_count(ppath) == 1 ?
gx_subpath_is_rectangular(ppath->first_subpath, pbox, &pnext) :
prt_none);
}
/* Translate an already-constructed path (in device space). */
/* Don't bother to update the cbox. */
int
gx_path_translate(gx_path * ppath, fixed dx, fixed dy)
{
segment *pseg;
#define update_xy(pt)\
pt.x += dx, pt.y += dy
if (ppath->box_last != 0) {
update_xy(ppath->bbox.p);
update_xy(ppath->bbox.q);
}
if (path_position_valid(ppath))
update_xy(ppath->position);
for (pseg = (segment *) (ppath->first_subpath); pseg != 0;
pseg = pseg->next
)
switch (pseg->type) {
case s_curve:
#define pcseg ((curve_segment *)pseg)
update_xy(pcseg->p1);
update_xy(pcseg->p2);
#undef pcseg
/* fall through */
default:
update_xy(pseg->pt);
}
#undef update_xy
return 0;
}
/* Scale an existing path by a power of 2 (positive or negative).
* Currently the path drawing routines can't handle values
* close to the edge of the representable space.
* Also see clamp_point() in gspath.c .
*/
void
gx_point_scale_exp2(gs_fixed_point * pt, int sx, int sy)
{
int v;
if (sx > 0) {
v = (max_int - int2fixed(1000)) >> sx; /* arbitrary */
if (pt->x > v)
pt->x = v;
else if (pt->x < -v)
pt->x = -v;
pt->x <<= sx;
} else
pt->x >>= -sx;
if (sy > 0) {
v = (max_int - int2fixed(1000)) >> sy;
if (pt->y > v)
pt->y = v;
else if (pt->y < -v)
pt->y = -v;
pt->y <<= sy;
} else
pt->y >>= -sy;
}
void
gx_rect_scale_exp2(gs_fixed_rect * pr, int sx, int sy)
{
gx_point_scale_exp2(&pr->p, sx, sy);
gx_point_scale_exp2(&pr->q, sx, sy);
}
int
gx_path_scale_exp2_shared(gx_path * ppath, int log2_scale_x, int log2_scale_y,
bool segments_shared)
{
segment *pseg;
gx_rect_scale_exp2(&ppath->bbox, log2_scale_x, log2_scale_y);
#define SCALE_XY(pt) gx_point_scale_exp2(&pt, log2_scale_x, log2_scale_y)
SCALE_XY(ppath->position);
if (!segments_shared) {
for (pseg = (segment *) (ppath->first_subpath); pseg != 0;
pseg = pseg->next
)
switch (pseg->type) {
case s_curve:
SCALE_XY(((curve_segment *)pseg)->p1);
SCALE_XY(((curve_segment *)pseg)->p2);
/* fall through */
default:
SCALE_XY(pseg->pt);
}
}
#undef SCALE_XY
return 0;
}
/*
* Reverse a path. We know ppath != ppath_old.
* NOTE: in releases 5.01 and earlier, the implicit line added by closepath
* became the first segment of the reversed path. Starting in release
* 5.02, the code follows the Adobe implementation (and LanguageLevel 3
* specification), in which this line becomes the *last* segment of the
* reversed path. This can produce some quite unintuitive results.
*
* The order of the subpaths is unspecified in the PLRM, but the CPSI
* reverses the subpaths, and the CET (11-05 p6, test 3) tests for it.
*/
int
gx_path_copy_reversed(const gx_path * ppath_old, gx_path * ppath)
{
const subpath *psub = ppath_old->current_subpath;
#ifdef DEBUG
if (gs_debug_c('P'))
gx_dump_path(ppath_old, "before reversepath");
#endif
nsp:
if (psub) {
const segment *prev = psub->last;
const segment *pseg;
segment_notes notes =
(prev == (const segment *)psub ? sn_none :
psub->next->notes);
segment_notes prev_notes;
int code;
if (!psub->is_closed) {
code = gx_path_add_point(ppath, prev->pt.x, prev->pt.y);
if (code < 0)
return code;
}
/*
* The do ... while structure of this loop is artificial,
* designed solely to keep compilers from complaining about
* 'statement not reached' or 'end-of-loop code not reached'.
* The normal exit from this loop is the goto statement in
* the s_start arm of the switch.
*/
do {
pseg = prev;
prev_notes = notes;
prev = pseg->prev;
notes = pseg->notes;
prev_notes = (prev_notes & sn_not_first) |
(notes & ~sn_not_first);
switch (pseg->type) {
case s_start:
/* Finished subpath */
if (psub->is_closed) {
code =
gx_path_close_subpath_notes(ppath, prev_notes);
if (code < 0)
return code;
}
do {
psub = (const subpath *)psub->prev;
} while (psub && psub->type != s_start);
goto nsp;
case s_curve:
{
const curve_segment *pc =
(const curve_segment *)pseg;
code = gx_path_add_curve_notes(ppath,
pc->p2.x, pc->p2.y,
pc->p1.x, pc->p1.y,
prev->pt.x, prev->pt.y, prev_notes);
break;
}
case s_line:
code = gx_path_add_line_notes(ppath,
prev->pt.x, prev->pt.y, prev_notes);
break;
case s_gap:
code = gx_path_add_gap_notes(ppath,
prev->pt.x, prev->pt.y, prev_notes);
break;
case s_line_close:
/* Skip the closing line. */
code = gx_path_add_point(ppath, prev->pt.x,
prev->pt.y);
break;
default: /* not possible */
return_error(gs_error_Fatal);
}
} while (code >= 0);
return code; /* only reached if code < 0 */
}
#undef sn_not_end
/*
* In the Adobe implementations, reversepath discards a trailing
* moveto unless the path consists only of a moveto. We reproduce
* this behavior here, even though we consider it a bug.
*/
if (ppath_old->first_subpath == 0 &&
path_last_is_moveto(ppath_old)
) {
int code = gx_path_add_point(ppath, ppath_old->position.x,
ppath_old->position.y);
if (code < 0)
return code;
}
#ifdef DEBUG
if (gs_debug_c('P'))
gx_dump_path(ppath, "after reversepath");
#endif
return 0;
}
int
gx_path_append_reversed(const gx_path * ppath_old, gx_path * ppath)
{
const subpath *psub = ppath_old->current_subpath;
#ifdef DEBUG
if (gs_debug_c('P'))
gx_dump_path(ppath_old, "before reversepath");
#endif
nsp:
if (psub) {
const segment *prev = psub->last;
const segment *pseg;
segment_notes notes =
(prev == (const segment *)psub ? sn_none :
psub->next->notes);
segment_notes prev_notes;
int code;
if (!psub->is_closed) {
code = gx_path_add_line(ppath, prev->pt.x, prev->pt.y);
if (code < 0)
return code;
}
/*
* The do ... while structure of this loop is artificial,
* designed solely to keep compilers from complaining about
* 'statement not reached' or 'end-of-loop code not reached'.
* The normal exit from this loop is the goto statement in
* the s_start arm of the switch.
*/
do {
pseg = prev;
prev_notes = notes;
prev = pseg->prev;
notes = pseg->notes;
prev_notes = (prev_notes & sn_not_first) |
(notes & ~sn_not_first);
switch (pseg->type) {
case s_start:
/* Finished subpath */
if (psub->is_closed) {
code =
gx_path_close_subpath_notes(ppath, prev_notes);
if (code < 0)
return code;
}
do {
psub = (const subpath *)psub->prev;
} while (psub && psub->type != s_start);
goto nsp;
case s_curve:
{
const curve_segment *pc =
(const curve_segment *)pseg;
code = gx_path_add_curve_notes(ppath,
pc->p2.x, pc->p2.y,
pc->p1.x, pc->p1.y,
prev->pt.x, prev->pt.y, prev_notes);
break;
}
case s_line:
code = gx_path_add_line_notes(ppath,
prev->pt.x, prev->pt.y, prev_notes);
break;
case s_gap:
code = gx_path_add_gap_notes(ppath,
prev->pt.x, prev->pt.y, prev_notes);
break;
case s_line_close:
/* Skip the closing line. */
code = gx_path_add_point(ppath, prev->pt.x,
prev->pt.y);
break;
default: /* not possible */
return_error(gs_error_Fatal);
}
} while (code >= 0);
return code; /* only reached if code < 0 */
}
#undef sn_not_end
/*
* In the Adobe implementations, reversepath discards a trailing
* moveto unless the path consists only of a moveto. We reproduce
* this behavior here, even though we consider it a bug.
*/
if (ppath_old->first_subpath == 0 &&
path_last_is_moveto(ppath_old)
) {
int code = gx_path_add_point(ppath, ppath_old->position.x,
ppath_old->position.y);
if (code < 0)
return code;
}
#ifdef DEBUG
if (gs_debug_c('P'))
gx_dump_path(ppath, "after reversepath");
#endif
return 0;
}
/* ------ Path enumeration ------ */
/* Allocate a path enumerator. */
gs_path_enum *
gs_path_enum_alloc(gs_memory_t * mem, client_name_t cname)
{
return gs_alloc_struct(mem, gs_path_enum, &st_path_enum, cname);
}
/* Start enumerating a path. */
int
gx_path_enum_init(gs_path_enum * penum, const gx_path * ppath)
{
penum->memory = 0; /* path not copied */
penum->path = ppath;
penum->copied_path = 0; /* not copied */
penum->pseg = (const segment *)ppath->first_subpath;
penum->moveto_done = false;
penum->notes = sn_none;
return 0;
}
/* Enumerate the next element of a path. */
/* If the path is finished, return 0; */
/* otherwise, return the element type. */
int
gx_path_enum_next(gs_path_enum * penum, gs_fixed_point ppts[3])
{
const segment *pseg = penum->pseg;
if (pseg == 0) { /* We've enumerated all the segments, but there might be */
/* a trailing moveto. */
const gx_path *ppath = penum->path;
if (path_last_is_moveto(ppath) && !penum->moveto_done) { /* Handle a trailing moveto */
penum->moveto_done = true;
penum->notes = sn_none;
ppts[0] = ppath->position;
return gs_pe_moveto;
}
return 0;
}
penum->pseg = pseg->next;
penum->notes = pseg->notes;
switch (pseg->type) {
case s_start:
ppts[0] = pseg->pt;
return gs_pe_moveto;
case s_line:
ppts[0] = pseg->pt;
return gs_pe_lineto;
case s_gap:
ppts[0] = pseg->pt;
return gs_pe_gapto;
case s_line_close:
ppts[0] = pseg->pt;
return gs_pe_closepath;
case s_curve:
#define pcseg ((const curve_segment *)pseg)
ppts[0] = pcseg->p1;
ppts[1] = pcseg->p2;
ppts[2] = pseg->pt;
return gs_pe_curveto;
#undef pcseg
default:
lprintf1("bad type %x in gx_path_enum_next!\n", pseg->type);
return_error(gs_error_Fatal);
}
}
/* Return the notes from the last-enumerated segment. */
segment_notes
gx_path_enum_notes(const gs_path_enum * penum)
{
return penum->notes;
}
/* Back up 1 element in the path being enumerated. */
/* Return true if successful, false if we are at the beginning of the path. */
/* This implementation allows backing up multiple times, */
/* but no client currently relies on this. */
bool
gx_path_enum_backup(gs_path_enum * penum)
{
const segment *pseg = penum->pseg;
if (pseg != 0) {
if ((pseg = pseg->prev) == 0)
return false;
penum->pseg = pseg;
return true;
}
/* We're at the end of the path. Check to see whether */
/* we need to back up over a trailing moveto. */
{
const gx_path *ppath = penum->path;
if (path_last_is_moveto(ppath) && penum->moveto_done) { /* Back up over the trailing moveto. */
penum->moveto_done = false;
return true;
} {
const subpath *psub = ppath->current_subpath;
if (psub == 0) /* empty path */
return false;
/* Back up to the last segment of the last subpath. */
penum->pseg = psub->last;
return true;
}
}
}
|