summaryrefslogtreecommitdiff
blob: d15c9b111dfc1c291575c353b5c403219e6df3d7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
/* Copyright (C) 2001-2021 Artifex Software, Inc.
   All Rights Reserved.

   This software is provided AS-IS with no warranty, either express or
   implied.

   This software is distributed under license and may not be copied,
   modified or distributed except as expressly authorized under the terms
   of the license contained in the file LICENSE in this distribution.

   Refer to licensing information at http://www.artifex.com or contact
   Artifex Software, Inc.,  1305 Grant Avenue - Suite 200, Novato,
   CA 94945, U.S.A., +1(415)492-9861, for further information.
*/


/* Dictionary implementation */
#include "math_.h"		/* for frexp */
#include "string_.h"		/* for strlen */
#include "ghost.h"
#include "gxalloc.h"		/* for accessing masks */
#include "ierrors.h"
#include "imemory.h"
#include "idebug.h"		/* for debug_print_name */
#include "inamedef.h"
#include "iname.h"
#include "ipacked.h"
#include "isave.h"		/* for value cache in names */
#include "store.h"
#include "idict.h"		/* interface definition */
#include "idictdef.h"
#include "iutil.h"
#include "ivmspace.h"		/* for store check */
/*
#include "idicttpl.h" - Do not remove this comment.
                        "idicttpl.h" is included below.
*/

/*
 * Dictionaries per se aren't supposed to know anything about the
 * dictionary stack, let alone the interpreter's dictionary stack.
 * Unfortunately, there is are two design couplings between them:
 * dictionary stacks cache some of the elements of their top dictionary
 * (requiring updating when that dictionary grows or is unpacked),
 * and names may cache a pointer to their definition (requiring a
 * check whether a dictionary appears on the dictionary stack).
 * Therefore, we need iddstack.h here.
 * We'd really like to fix this, but we don't see how.
 */
#include "iddstack.h"

/*
 * Define the size of the largest valid dictionary.
 * This is limited by the size field of the keys and values refs,
 * and by the enumeration interface, which requires the size to
 * fit in an int.  As it happens, max_array_size will always be
 * smaller than max_int.
 */
const uint dict_max_size = max_array_size - 1;

/* Define whether dictionaries are packed by default. */
enum {
    dict_default_pack = true
};

/*
 * Define the check for whether we can set the 1-element cache.
 * We only set the cache if we aren't inside a save.
 * This way, we never have to undo setting the cache.
 */
#define CAN_SET_PVALUE_CACHE(pds, pdref, mem)\
  (pds && dstack_dict_is_permanent(pds, pdref) && !ref_saving_in(mem))

/* Forward references */
static int dict_create_contents(uint size, const ref * pdref, bool pack);

/* Debugging statistics - uses a static, so not threadsafe. */
/* #define COLLECT_STATS_IDICT */

#ifdef COLLECT_STATS_IDICT
struct stats_dict_s {
    long lookups;		/* total lookups */
    long probe1;		/* successful lookups on only 1 probe */
    long probe2;		/* successful lookups on 2 probes */
} stats_dict;

/* Wrapper for dict_find */
int real_dict_find(const ref * pdref, const ref * key, ref ** ppvalue);
int
dict_find(const ref * pdref, const ref * pkey, ref ** ppvalue)
{
    dict *pdict = pdref->value.pdict;
    int code = real_dict_find(pdref, pkey, ppvalue);

    stats_dict.lookups++;
    if (r_has_type(pkey, t_name) && dict_is_packed(pdict)) {
        uint nidx = name_index(dict_mem(pdict), pkey);
        uint hash =
        dict_hash_mod(dict_name_index_hash(nidx), npairs(pdict)) + 1;

        if (pdict->keys.value.packed[hash] ==
            pt_tag(pt_literal_name) + nidx
            )
            stats_dict.probe1++;
        else if (pdict->keys.value.packed[hash - 1] ==
                 pt_tag(pt_literal_name) + nidx
            )
            stats_dict.probe2++;
    }
    /* Do the cheap flag test before the expensive remainder test. */
    if (gs_debug_c('d') && !(stats_dict.lookups % 1000))
        dlprintf3("[d]lookups=%ld probe1=%ld probe2=%ld\n",
                  stats_dict.lookups, stats_dict.probe1, stats_dict.probe2);
    return code;
}
#define dict_find real_dict_find
#endif

/* Round up the size of a dictionary.  Return 0 if too large. */
uint
dict_round_size_small(uint rsize)
{
    return (rsize > dict_max_size ? 0 : rsize);
}
uint
dict_round_size_large(uint rsize)
{				/* Round up to a power of 2 if not huge. */
    /* If the addition overflows, the new rsize will be zero, */
    /* which will (correctly) be interpreted as a limitcheck. */
    if (rsize > dict_max_non_huge)
        return (rsize > dict_max_size ? 0 : rsize);
    while (rsize & (rsize - 1))
        rsize = (rsize | (rsize - 1)) + 1;
    return (rsize <= dict_max_size ? rsize : dict_max_non_huge);
}

/* Create a dictionary using the given allocator. */
int
dict_alloc(gs_ref_memory_t * mem, uint size, ref * pdref)
{
    ref arr;
    int code =
        gs_alloc_ref_array(mem, &arr, a_all, sizeof(dict) / sizeof(ref),
                           "dict_alloc");
    dict *pdict;
    ref dref;

    if (code < 0)
        return code;
    pdict = (dict *) arr.value.refs;
    make_tav(&dref, t_dictionary,
             r_space(&arr) | imemory_new_mask(mem) | a_all,
             pdict, pdict);
    make_struct(&pdict->memory, avm_foreign, mem);
    code = dict_create_contents(size, &dref, dict_default_pack);
    if (code < 0) {
        gs_free_ref_array(mem, &arr, "dict_alloc");
        return code;
    }
    *pdref = dref;
    return 0;
}
/* Create unpacked keys for a dictionary. */
/* The keys are allocated using the same allocator as the dictionary. */
static int
dict_create_unpacked_keys(uint asize, const ref * pdref)
{
    dict *pdict = pdref->value.pdict;
    gs_ref_memory_t *mem = dict_memory(pdict);
    int code;

    code = gs_alloc_ref_array(mem, &pdict->keys, a_all, asize,
                              "dict_create_unpacked_keys");
    if (code >= 0) {
        uint new_mask = imemory_new_mask(mem);
        ref *kp = pdict->keys.value.refs;

        r_set_attrs(&pdict->keys, new_mask);
        refset_null_new(kp, asize, new_mask);
        r_set_attrs(kp, a_executable);	/* wraparound entry */
    }
    return code;
}
/* Create the contents (keys and values) of a newly allocated dictionary. */
/* Allocate in the current VM space, which is assumed to be the same as */
/* the VM space where the dictionary is allocated. */
static int
dict_create_contents(uint size, const ref * pdref, bool pack)
{
    dict *pdict = pdref->value.pdict;
    gs_ref_memory_t *mem = dict_memory(pdict);
    uint new_mask = imemory_new_mask(mem);
    uint asize = dict_round_size((size == 0 ? 1 : size));
    int code;
    register uint i;

    if (asize == 0 || asize > max_array_size - 1)	/* too large */
        return_error(gs_error_limitcheck);
    asize++;			/* allow room for wraparound entry */
    code = gs_alloc_ref_array(mem, &pdict->values, a_all, asize,
                              "dict_create_contents(values)");
    if (code < 0)
        return code;
    r_set_attrs(&pdict->values, new_mask);
    refset_null_new(pdict->values.value.refs, asize, new_mask);
    if (pack) {
        uint ksize = (asize + packed_per_ref - 1) / packed_per_ref;
        ref arr;
        ref_packed *pkp;
        ref_packed *pzp;

        code = gs_alloc_ref_array(mem, &arr, a_all, ksize,
                                  "dict_create_contents(packed keys)");
        if (code < 0)
            return code;
        pkp = (ref_packed *) arr.value.refs;
        make_tasv(&pdict->keys, t_shortarray,
                  r_space(&arr) | a_all | new_mask,
                  asize, packed, pkp);
        for (pzp = pkp, i = 0; i < asize || i % packed_per_ref; pzp++, i++)
            *pzp = packed_key_empty;
        *pkp = packed_key_deleted;	/* wraparound entry */
    } else {			/* not packed */
        int code = dict_create_unpacked_keys(asize, pdref);

        if (code < 0)
            return code;
    }
    make_tav(&pdict->count, t_integer, new_mask, intval, 0);
    make_tav(&pdict->maxlength, t_integer, new_mask, intval, size);
    return 0;
}

/*
 * Ensure that a dictionary uses the unpacked representation for keys.
 * We can't just use dict_resize, because the values slots mustn't move.
 */
int
dict_unpack(ref * pdref, dict_stack_t *pds)
{
    dict *pdict = pdref->value.pdict;

    if (!dict_is_packed(pdict))
        return 0;		/* nothing to do */
    {
        gs_ref_memory_t *mem = dict_memory(pdict);
        uint count = nslots(pdict);
        const ref_packed *okp = pdict->keys.value.packed;
        ref old_keys;
        int code;
        ref *nkp;

        old_keys = pdict->keys;
        if (ref_must_save_in(mem, &old_keys))
            ref_do_save_in(mem, pdref, &pdict->keys, "dict_unpack(keys)");
        code = dict_create_unpacked_keys(count, pdref);
        if (code < 0)
            return code;
        for (nkp = pdict->keys.value.refs; count--; okp++, nkp++)
            if (r_packed_is_name(okp)) {
                packed_get((const gs_memory_t *)mem, okp, nkp);
                ref_mark_new_in(mem, nkp);
            } else if (*okp == packed_key_deleted)
                r_set_attrs(nkp, a_executable);
        if (!ref_must_save_in(mem, &old_keys))
            gs_free_ref_array(mem, &old_keys, "dict_unpack(old keys)");
        if (pds)
            dstack_set_top(pds);	/* just in case */
    }
    return 0;
}

/*
 * Look up a key in a dictionary.  Store a pointer to the value slot
 * where found, or to the (value) slot for inserting.
 * See idict.h for the possible return values.
 */
int
dict_find(const ref * pdref, const ref * pkey,
          ref ** ppvalue /* result is stored here */ )
{
    dict *pdict = pdref->value.pdict;
    uint size = npairs(pdict);
    register int etype;
    uint nidx;
    ref_packed kpack;
    uint hash;
    int ktype;
    const gs_memory_t *mem = dict_mem(pdict);

    /* Compute hash.  The only types we bother with are strings, */
    /* names, and (unlikely, but worth checking for) integers. */
    switch (r_type(pkey)) {
    case t_string:		/* convert to a name first */
        {
            ref nref;
            int code;

            if (!r_has_attr(pkey, a_read))
                return_error(gs_error_invalidaccess);
            code = name_ref(mem, pkey->value.bytes, r_size(pkey), &nref, 1);
            if (code < 0)
                return code;
            nidx = name_index(mem, &nref);
        }
        goto nh;
    case t_name:
        nidx = name_index(mem, pkey);
    nh:
        hash = dict_name_index_hash(nidx);
        kpack = packed_name_key(nidx);
        ktype = t_name;
        break;
    case t_real:
        /*
         * Make sure that equal reals and integers hash the same.
         */
        {
            int expt, i;
            double mant = frexp(pkey->value.realval, &expt);
            /*
             * The value is mant * 2^expt, where 0.5 <= mant < 1,
             * or else expt == mant == 0.
             */

            if (expt < sizeof(long) * 8 || pkey->value.realval == min_long)
                i = (int)pkey->value.realval;
            else
                i = (int)(mant * min_long); /* MSVC 6.00.8168.0 cannot compile this */
            hash = (uint)i * 30503;         /*   with -O2 as a single expression    */
        }
        goto ih;
    case t_integer:
        hash = (uint)pkey->value.intval * 30503;
    ih:
        kpack = packed_key_impossible;
        ktype = -1;
        nidx = 0;		/* only to pacify gcc */
        break;
    case t_null:		/* not allowed as a key */
        return_error(gs_error_typecheck);
    default:
        hash = r_btype(pkey) * 99;	/* yech */
        kpack = packed_key_impossible;
        ktype = -1;
        nidx = 0;		/* only to pacify gcc */
    }
    /* Search the dictionary */
    if (dict_is_packed(pdict)) {
        const ref_packed *pslot = 0;

#	define found *ppvalue = packed_search_value_pointer; return 1
#	define deleted if (pslot == 0) pslot = kp
#	define missing goto miss
#	include "idicttpl.h"
#	undef missing
#	undef deleted
#	undef found
        /*
         * Double wraparound, dict is full.
         * Note that even if there was an empty slot (pslot != 0),
         * we must return dictfull if length = maxlength.
         */
        if (pslot == 0 || d_length(pdict) == d_maxlength(pdict))
            return_error(gs_error_dictfull);
        *ppvalue = pdict->values.value.refs + (pslot - kbot);
        return 0;
      miss:			/* Key is missing, not double wrap.  See above re dictfull. */
        if (d_length(pdict) == d_maxlength(pdict))
            return_error(gs_error_dictfull);
        if (pslot == 0)
            pslot = kp;
        *ppvalue = pdict->values.value.refs + (pslot - kbot);
        return 0;
    } else {
        ref *kbot = pdict->keys.value.refs;
        register ref *kp;
        ref *pslot = 0;
        int wrap = 0;

        for (kp = kbot + dict_hash_mod(hash, size) + 2;;) {
            --kp;
            if ((etype = r_type(kp)) == ktype) {	/* Fast comparison if both keys are names */
                if (name_index(mem, kp) == nidx) {
                    *ppvalue = pdict->values.value.refs + (kp - kbot);
                    return 1;
                }
            } else if (etype == t_null) {	/* Empty, deleted, or wraparound. */
                /* Figure out which. */
                if (kp == kbot) {	/* wrap */
                    if (wrap++) {	/* wrapped twice */
                        if (pslot == 0)
                            return_error(gs_error_dictfull);
                        break;
                    }
                    kp += size + 1;
                } else if (r_has_attr(kp, a_executable)) {	/* Deleted entry, save the slot. */
                    if (pslot == 0)
                        pslot = kp;
                } else		/* key not found */
                    break;
            } else {
                if (obj_eq(mem, kp, pkey)) {
                    *ppvalue = pdict->values.value.refs + (kp - kbot);
                    return 1;
                }
            }
        }
        if (d_length(pdict) == d_maxlength(pdict))
            return_error(gs_error_dictfull);
        *ppvalue = pdict->values.value.refs +
            ((pslot != 0 ? pslot : kp) - kbot);
        return 0;
    }
}

/*
 * Look up a (constant) C string in a dictionary.
 * Return 1 if found, <= 0 if not.
 */
int
dict_find_string(const ref * pdref, const char *kstr, ref ** ppvalue)
{
    int code;
    ref kname;
    if ( pdref != 0 ) {
        dict *pdict = pdref->value.pdict;

        if ((code = name_ref(dict_mem(pdict),
                             (const byte *)kstr, strlen(kstr), &kname, -1)) < 0)
            return code;
        code = dict_find(pdref, &kname, ppvalue);
        if (code == gs_error_dictfull)
            return_error(gs_error_undefined);
        return code;
    }
    return 0;
}

/*
 * Enter a key-value pair in a dictionary.
 * See idict.h for the possible return values.
 */
int
dict_put(ref * pdref /* t_dictionary */ , const ref * pkey, const ref * pvalue,
         dict_stack_t *pds)
{
    dict *pdict = pdref->value.pdict;
    gs_ref_memory_t *mem = dict_memory(pdict);
    gs_memory_t *pmem = dict_mem(pdict);
    int rcode = 0;
    int code;
    ref *pvslot, kname;

    /* Check the value. */
    store_check_dest(pdref, pvalue);
  top:if ((code = dict_find(pdref, pkey, &pvslot)) <= 0) {	/* not found *//* Check for overflow */
        uint index;

        switch (code) {
            case 0:
                break;
            case gs_error_dictfull:
                if (!pmem->gs_lib_ctx->dict_auto_expand)
                    return_error(gs_error_dictfull);
                code = dict_grow(pdref, pds);
                if (code < 0)
                    return code;
                goto top;	/* keep things simple */
            default:		/* gs_error_typecheck */
                return code;
        }
        index = pvslot - pdict->values.value.refs;
        /* If the key is a string, convert it to a name. */
        if (r_has_type(pkey, t_string)) {
            int code;

            if (!r_has_attr(pkey, a_read))
                return_error(gs_error_invalidaccess);
            code = name_from_string(pmem, pkey, &kname);
            if (code < 0)
                return code;
            pkey = &kname;
        }
        if (dict_is_packed(pdict)) {
            ref_packed *kp;

            if (!r_has_type(pkey, t_name) ||
                name_index(pmem, pkey) > packed_name_max_index
                ) {		/* Change to unpacked representation. */
                int code = dict_unpack(pdref, pds);

                if (code < 0)
                    return code;
                goto top;
            }
            kp = pdict->keys.value.writable_packed + index;
            if (ref_must_save_in(mem, &pdict->keys)) {	/* See initial comment for why it is safe */
                /* not to save the change if the keys */
                /* array itself is new. */
                ref_do_save_in(mem, &pdict->keys, kp, "dict_put(key)");
            }
            *kp = pt_tag(pt_literal_name) + name_index(pmem, pkey);
        } else {
            ref *kp = pdict->keys.value.refs + index;

            if_debug2m('d', (const gs_memory_t *)mem, "[d]"PRI_INTPTR": fill key at "PRI_INTPTR"\n",
                       (intptr_t)pdict, (intptr_t)kp);
            store_check_dest(pdref, pkey);
            ref_assign_old_in(mem, &pdict->keys, kp, pkey,
                              "dict_put(key)");	/* set key of pair */
        }
        ref_save_in(mem, pdref, &pdict->count, "dict_put(count)");
        pdict->count.value.intval++;
        /* If the key is a name, update its 1-element cache. */
        if (r_has_type(pkey, t_name)) {
            name *pname = pkey->value.pname;

            if (pname->pvalue == pv_no_defn &&
                CAN_SET_PVALUE_CACHE(pds, pdref, mem)
                ) {		/* Set the cache. */
                if_debug0m('d', (const gs_memory_t *)mem, "[d]set cache\n");
                pname->pvalue = pvslot;
            } else {		/* The cache can't be used. */
                if_debug0m('d', (const gs_memory_t *)mem, "[d]no cache\n");
                pname->pvalue = pv_other;
            }
        }
        rcode = 1;
    }
    if_debug8m('d', (const gs_memory_t *)mem,
               "[d]"PRI_INTPTR": put key 0x%lx 0x%lx\n  value at "PRI_INTPTR": old 0x%lx 0x%lx, new 0x%lx 0x%lx\n",
               (intptr_t) pdref->value.pdict,
               ((const ulong *)pkey)[0], ((const ulong *)pkey)[1],
               (intptr_t) pvslot,
               ((const ulong *)pvslot)[0], ((const ulong *)pvslot)[1],
               ((const ulong *)pvalue)[0], ((const ulong *)pvalue)[1]);
    ref_assign_old_in(mem, &pdref->value.pdict->values, pvslot, pvalue,
                      "dict_put(value)");
    return rcode;
}

/*
 * Enter a key-value pair where the key is a (constant) C string.
 */
int
dict_put_string(ref * pdref, const char *kstr, const ref * pvalue,
                dict_stack_t *pds)
{
    int code;
    ref kname;
    dict *pdict = pdref->value.pdict;

    if ((code = name_ref(dict_mem(pdict),
                         (const byte *)kstr, strlen(kstr), &kname, 0)) < 0)
        return code;
    return dict_put(pdref, &kname, pvalue, pds);
}

/*
 * Enter a key-value pair where the key is a C string that must be copied.
 */
int
dict_put_string_copy(ref * pdref, const char *kstr, const ref * pvalue,
                     dict_stack_t *pds)
{
    int code;
    ref kname;
    dict *pdict = pdref->value.pdict;

    if ((code = name_ref(dict_mem(pdict),
                         (const byte *)kstr, strlen(kstr), &kname, 1)) < 0)
        return code;
    return dict_put(pdref, &kname, pvalue, pds);
}

/* Remove an element from a dictionary. */
int
dict_undef(ref * pdref, const ref * pkey, dict_stack_t *pds)
{
    gs_ref_memory_t *mem;
    ref *pvslot;
    dict *pdict;
    uint index;
    int code = dict_find(pdref, pkey, &pvslot);

    switch (code) {
    case 0:
    case gs_error_dictfull:
        return_error(gs_error_undefined);
    case 1:
        break;
    default:			/* other error */
        return code;
    }
    /* Remove the entry from the dictionary. */
    pdict = pdref->value.pdict;
    index = pvslot - pdict->values.value.refs;
    mem = dict_memory(pdict);
    if (dict_is_packed(pdict)) {
        ref_packed *pkp = pdict->keys.value.writable_packed + index;
        bool must_save = ref_must_save_in(mem, &pdict->keys);

        if_debug3m('d', (const gs_memory_t *)mem,
                   "[d]"PRI_INTPTR": removing key at "PRI_INTPTR": 0x%x\n",
                   (intptr_t)pdict, (intptr_t)pkp, (uint)*pkp);
        /* See the initial comment for why it is safe not to save */
        /* the change if the keys array itself is new. */
        if (must_save)
            ref_do_save_in(mem, &pdict->keys, pkp, "dict_undef(key)");
        /*
         * Accumulating deleted entries slows down lookup.
         * Detect the easy case where we can use an empty entry
         * rather than a deleted one, namely, when the next entry
         * in the probe order is empty.
         */
        if (pkp[-1] == packed_key_empty) {
            /*
             * In this case we can replace any preceding deleted keys with
             * empty ones as well.
             */
            uint end = nslots(pdict);

            *pkp = packed_key_empty;
            if (must_save) {
                while (++index < end && *++pkp == packed_key_deleted) {
                    ref_do_save_in(mem, &pdict->keys, pkp, "dict_undef(key)");
                    *pkp = packed_key_empty;
                }
            } else {
                while (++index < end && *++pkp == packed_key_deleted)
                    *pkp = packed_key_empty;
            }
        } else
            *pkp = packed_key_deleted;
    } else {			/* not packed */
        ref *kp = pdict->keys.value.refs + index;

        if_debug4m('d', (const gs_memory_t *)mem,
                   "[d]"PRI_INTPTR": removing key at "PRI_INTPTR": 0x%lx 0x%lx\n",
                   (intptr_t)pdict, (intptr_t)kp, ((ulong *)kp)[0], ((ulong *)kp)[1]);
        make_null_old_in(mem, &pdict->keys, kp, "dict_undef(key)");
        /*
         * Accumulating deleted entries slows down lookup.
         * Detect the easy case where we can use an empty entry
         * rather than a deleted one, namely, when the next entry
         * in the probe order is empty.
         */
        if (!r_has_type(kp - 1, t_null) ||	/* full entry */
            r_has_attr(kp - 1, a_executable)	/* deleted or wraparound */
            )
            r_set_attrs(kp, a_executable);	/* mark as deleted */
    }
    ref_save_in(mem, pdref, &pdict->count, "dict_undef(count)");
    pdict->count.value.intval--;
    /* If the key is a name, update its 1-element cache. */
    if (r_has_type(pkey, t_name)) {
        name *pname = pkey->value.pname;

        if (pv_valid(pname->pvalue)) {
#ifdef DEBUG
            /* Check the the cache is correct. */
            if (!(pds && dstack_dict_is_permanent(pds, pdref)))
                lprintf1("dict_undef: cached name value pointer " PRI_INTPTR " is incorrect!\n",
                         (intptr_t) pname->pvalue);
#endif
            /* Clear the cache */
            pname->pvalue = pv_no_defn;
        }
    }
    make_null_old_in(mem, &pdict->values, pvslot, "dict_undef(value)");
    return 0;
}

/* Return the number of elements in a dictionary. */
uint
dict_length(const ref * pdref /* t_dictionary */ )
{
    return d_length(pdref->value.pdict);
}

/* Return the capacity of a dictionary. */
uint
dict_maxlength(const ref * pdref /* t_dictionary */ )
{
    return d_maxlength(pdref->value.pdict);
}

/* Return the maximum index of a slot within a dictionary. */
uint
dict_max_index(const ref * pdref /* t_dictionary */ )
{
    return npairs(pdref->value.pdict) - 1;
}

/*
 * Copy one dictionary into another.
 * If COPY_NEW_ONLY is set, only copy entries whose keys
 * aren't already present in the destination.
 * If COPY_FOR_RESIZE is set, reset any valid name cache entries to
 * pv_no_defn before doing the dict_put.
 */
#define COPY_NEW_ONLY 1
#define COPY_FOR_RESIZE 2
static int
dict_copy_elements(const ref * pdrfrom /* t_dictionary */ ,
                  ref * pdrto /* t_dictionary */ , int options,
                  dict_stack_t *pds)
{
    int space = r_space(pdrto);
    int index;
    ref elt[2];
    ref *pvslot;
    int code;

    if (space != avm_max) {
        /* Do the store check before starting the copy. */
        index = dict_first(pdrfrom);
        while ((index = dict_next(pdrfrom, index, elt)) >= 0)
            if (!(options & COPY_NEW_ONLY) ||
                dict_find(pdrto, &elt[0], &pvslot) <= 0
                ) {
                store_check_space(space, &elt[0]);
                store_check_space(space, &elt[1]);
            }
    }
    /* Now copy the contents. */
    index = dict_first(pdrfrom);
    while ((index = dict_next(pdrfrom, index, elt)) >= 0) {
        ref *pvalue = pv_no_defn;

        if ((options & COPY_NEW_ONLY) &&
            dict_find(pdrto, &elt[0], &pvslot) > 0
            )
            continue;
        if ((options & COPY_FOR_RESIZE) &&
            r_has_type(&elt[0], t_name) &&
            (pvalue = elt[0].value.pname->pvalue, pv_valid(pvalue))
            )
            elt[0].value.pname->pvalue = pv_no_defn;
        if ((code = dict_put(pdrto, &elt[0], &elt[1], pds)) < 0) {
            /*
             * If COPY_FOR_RESIZE is set, the dict_put isn't supposed to
             * be able to fail, but we don't want to depend on this.
             */
            if (pvalue != pv_no_defn)
                elt[0].value.pname->pvalue = pvalue;
            return code;
        }
    }
    return 0;
}
int
dict_copy_entries(const ref *pdrfrom, ref *pdrto, bool new_only,
                  dict_stack_t *pds)
{
    return dict_copy_elements(pdrfrom, pdrto, (new_only ? COPY_NEW_ONLY : 0),
                              pds);
}

/* Resize a dictionary. */
int
dict_resize(ref * pdref, uint new_size, dict_stack_t *pds)
{
    dict *pdict = pdref->value.pdict;
    gs_ref_memory_t *mem = dict_memory(pdict);
    uint new_mask = imemory_new_mask(mem);
    ushort orig_attrs = r_type_attrs(&pdict->values) & (a_all | a_executable);
    dict dnew;
    ref drto;
    int code;

    if (new_size < d_length(pdict)) {
        if (!mem->gs_lib_ctx->dict_auto_expand)
            return_error(gs_error_dictfull);
        new_size = d_length(pdict);
    }
    make_tav(&drto, t_dictionary, r_space(pdref) | a_all | new_mask,
             pdict, &dnew);
    dnew.memory = pdict->memory;
    if ((code = dict_create_contents(new_size, &drto, dict_is_packed(pdict))) < 0)
        return code;
    /*
     * We must suppress the store check, in case we are expanding
     * systemdict or another global dictionary that is allowed
     * to reference local objects.
     */
    r_set_space(&drto, avm_local);
    /*
     * If we are expanding a permanent dictionary, we must make sure that
     * dict_put doesn't think this is a second definition for any
     * single-definition names.  This in turn requires that
     * dstack_dict_is_permanent must be true for the second ("to")
     * argument of dict_copy_elements, which requires temporarily
     * setting *pdref = drto.
     */
    if (CAN_SET_PVALUE_CACHE(pds, pdref, mem)) {
        ref drfrom;

        drfrom = *pdref;
        *pdref = drto;
        dict_copy_elements(&drfrom, pdref, COPY_FOR_RESIZE, pds);
        *pdref = drfrom;
    } else {
        dict_copy_elements(pdref, &drto, 0, pds);
    }
    /* Save or free the old dictionary. */
    if (ref_must_save_in(mem, &pdict->values))
        ref_do_save_in(mem, pdref, &pdict->values, "dict_resize(values)");
    else
        gs_free_ref_array(mem, &pdict->values, "dict_resize(old values)");
    if (ref_must_save_in(mem, &pdict->keys))
        ref_do_save_in(mem, pdref, &pdict->keys, "dict_resize(keys)");
    else
        gs_free_ref_array(mem, &pdict->keys, "dict_resize(old keys)");
    ref_assign(&pdict->keys, &dnew.keys);
    ref_assign(&pdict->values, &dnew.values);
    r_store_attrs(&pdict->values, a_all | a_executable, orig_attrs);
    ref_save_in(dict_memory(pdict), pdref, &pdict->maxlength,
                "dict_resize(maxlength)");
    d_set_maxlength(pdict, new_size);
    if (pds)
        dstack_set_top(pds);	/* just in case this is the top dict */
    return 0;
}

/* Grow a dictionary for dict_put. */
int
dict_grow(ref * pdref, dict_stack_t *pds)
{
    dict *pdict = pdref->value.pdict;
    /* We might have maxlength < npairs, if */
    /* dict_round_size increased the size. */
    ulong new_size = (ulong) d_maxlength(pdict);
    /* Adobe does this */
    if (new_size < 20)
        new_size += 10;
    else if (new_size < 200)
        new_size *= 2;
    else
        new_size += new_size / 2;
#if ARCH_SIZEOF_INT < ARCH_SIZEOF_LONG
    if (new_size > max_uint)
        new_size = max_uint;
#endif
    if (new_size > npairs(pdict)) {
        int code = dict_resize(pdref, (uint) new_size, pds);

        if (code >= 0)
            return code;
        /* new_size was too big. */
        if (npairs(pdict) < dict_max_size) {
            code = dict_resize(pdref, dict_max_size, pds);
            if (code >= 0)
                return code;
        }
        if (npairs(pdict) == d_maxlength(pdict)) {	/* Can't do it. */
            return code;
        }
        /* We can't grow to new_size, but we can grow to npairs. */
        new_size = npairs(pdict);
    }
    /* maxlength < npairs, we can grow in place */
    ref_save_in(dict_memory(pdict), pdref, &pdict->maxlength,
                "dict_put(maxlength)");
    d_set_maxlength(pdict, new_size);
    return 0;
}

/* Prepare to enumerate a dictionary. */
int
dict_first(const ref * pdref)
{
    return (int)nslots(pdref->value.pdict);
}

/* Enumerate the next element of a dictionary. */
int
dict_next(const ref * pdref, int index, ref * eltp /* ref eltp[2] */ )
{
    dict *pdict = pdref->value.pdict;
    ref *vp = pdict->values.value.refs + index;

    while (vp--, --index >= 0) {
        array_get(dict_mem(pdict), &pdict->keys, (long)index, eltp);
        /* Make sure this is a valid entry. */
        if (r_has_type(eltp, t_name) ||
            (!dict_is_packed(pdict) && !r_has_type(eltp, t_null))
            ) {
            eltp[1] = *vp;
            if_debug6m('d', dict_mem(pdict), "[d]0x%lx: index %d: %lx %lx, %lx %lx\n",
                       (intptr_t)pdict, index,
                       ((ulong *) eltp)[0], ((ulong *) eltp)[1],
                       ((ulong *) vp)[0], ((ulong *) vp)[1]);
            return index;
        }
    }
    return -1;			/* no more elements */
}

/* Return the index of a value within a dictionary. */
int
dict_value_index(const ref * pdref, const ref * pvalue)
{
    return (int)(pvalue - pdref->value.pdict->values.value.refs - 1);
}

/* Return the entry at a given index within a dictionary. */
/* If the index designates an unoccupied entry, return gs_error_undefined. */
int
dict_index_entry(const ref * pdref, int index, ref * eltp /* ref eltp[2] */ )
{
    const dict *pdict = pdref->value.pdict;

    array_get(dict_mem(pdict), &pdict->keys, (long)(index + 1), eltp);
    if (r_has_type(eltp, t_name) ||
        (!dict_is_packed(pdict) && !r_has_type(eltp, t_null))
        ) {
        eltp[1] = pdict->values.value.refs[index + 1];
        return 0;
    }
    return gs_error_undefined;
}