# Copyright 2002-2019 Gentoo Authors # Distributed under the terms of the GNU General Public License v2 # @ECLASS: toolchain-funcs.eclass # @MAINTAINER: # Toolchain Ninjas <toolchain@gentoo.org> # @BLURB: functions to query common info about the toolchain # @DESCRIPTION: # The toolchain-funcs aims to provide a complete suite of functions # for gleaning useful information about the toolchain and to simplify # ugly things like cross-compiling and multilib. All of this is done # in such a way that you can rely on the function always returning # something sane. if [[ -z ${_TOOLCHAIN_FUNCS_ECLASS} ]]; then _TOOLCHAIN_FUNCS_ECLASS=1 inherit multilib # tc-getPROG <VAR [search vars]> <default> [tuple] _tc-getPROG() { local tuple=$1 local v var vars=$2 local prog=( $3 ) var=${vars%% *} for v in ${vars} ; do if [[ -n ${!v} ]] ; then export ${var}="${!v}" echo "${!v}" return 0 fi done local search= [[ -n $4 ]] && search=$(type -p $4-${prog[0]}) [[ -z ${search} && -n ${!tuple} ]] && search=$(type -p ${!tuple}-${prog[0]}) [[ -n ${search} ]] && prog[0]=${search##*/} export ${var}="${prog[*]}" echo "${!var}" } tc-getBUILD_PROG() { local vars="BUILD_$1 $1_FOR_BUILD HOST$1" # respect host vars if not cross-compiling # https://bugs.gentoo.org/630282 tc-is-cross-compiler || vars+=" $1" _tc-getPROG CBUILD "${vars}" "${@:2}" } tc-getPROG() { _tc-getPROG CHOST "$@"; } # @FUNCTION: tc-getAR # @USAGE: [toolchain prefix] # @RETURN: name of the archiver tc-getAR() { tc-getPROG AR ar "$@"; } # @FUNCTION: tc-getAS # @USAGE: [toolchain prefix] # @RETURN: name of the assembler tc-getAS() { tc-getPROG AS as "$@"; } # @FUNCTION: tc-getCC # @USAGE: [toolchain prefix] # @RETURN: name of the C compiler tc-getCC() { tc-getPROG CC gcc "$@"; } # @FUNCTION: tc-getCPP # @USAGE: [toolchain prefix] # @RETURN: name of the C preprocessor tc-getCPP() { tc-getPROG CPP "${CC:-gcc} -E" "$@"; } # @FUNCTION: tc-getCXX # @USAGE: [toolchain prefix] # @RETURN: name of the C++ compiler tc-getCXX() { tc-getPROG CXX g++ "$@"; } # @FUNCTION: tc-getLD # @USAGE: [toolchain prefix] # @RETURN: name of the linker tc-getLD() { tc-getPROG LD ld "$@"; } # @FUNCTION: tc-getSTRIP # @USAGE: [toolchain prefix] # @RETURN: name of the strip program tc-getSTRIP() { tc-getPROG STRIP strip "$@"; } # @FUNCTION: tc-getNM # @USAGE: [toolchain prefix] # @RETURN: name of the symbol/object thingy tc-getNM() { tc-getPROG NM nm "$@"; } # @FUNCTION: tc-getRANLIB # @USAGE: [toolchain prefix] # @RETURN: name of the archiver indexer tc-getRANLIB() { tc-getPROG RANLIB ranlib "$@"; } # @FUNCTION: tc-getOBJCOPY # @USAGE: [toolchain prefix] # @RETURN: name of the object copier tc-getOBJCOPY() { tc-getPROG OBJCOPY objcopy "$@"; } # @FUNCTION: tc-getOBJDUMP # @USAGE: [toolchain prefix] # @RETURN: name of the object dumper tc-getOBJDUMP() { tc-getPROG OBJDUMP objdump "$@"; } # @FUNCTION: tc-getF77 # @USAGE: [toolchain prefix] # @RETURN: name of the Fortran 77 compiler tc-getF77() { tc-getPROG F77 gfortran "$@"; } # @FUNCTION: tc-getFC # @USAGE: [toolchain prefix] # @RETURN: name of the Fortran 90 compiler tc-getFC() { tc-getPROG FC gfortran "$@"; } # @FUNCTION: tc-getGCJ # @USAGE: [toolchain prefix] # @RETURN: name of the java compiler tc-getGCJ() { tc-getPROG GCJ gcj "$@"; } # @FUNCTION: tc-getGO # @USAGE: [toolchain prefix] # @RETURN: name of the Go compiler tc-getGO() { tc-getPROG GO gccgo "$@"; } # @FUNCTION: tc-getPKG_CONFIG # @USAGE: [toolchain prefix] # @RETURN: name of the pkg-config tool tc-getPKG_CONFIG() { tc-getPROG PKG_CONFIG pkg-config "$@"; } # @FUNCTION: tc-getRC # @USAGE: [toolchain prefix] # @RETURN: name of the Windows resource compiler tc-getRC() { tc-getPROG RC windres "$@"; } # @FUNCTION: tc-getDLLWRAP # @USAGE: [toolchain prefix] # @RETURN: name of the Windows dllwrap utility tc-getDLLWRAP() { tc-getPROG DLLWRAP dllwrap "$@"; } # @FUNCTION: tc-getBUILD_AR # @USAGE: [toolchain prefix] # @RETURN: name of the archiver for building binaries to run on the build machine tc-getBUILD_AR() { tc-getBUILD_PROG AR ar "$@"; } # @FUNCTION: tc-getBUILD_AS # @USAGE: [toolchain prefix] # @RETURN: name of the assembler for building binaries to run on the build machine tc-getBUILD_AS() { tc-getBUILD_PROG AS as "$@"; } # @FUNCTION: tc-getBUILD_CC # @USAGE: [toolchain prefix] # @RETURN: name of the C compiler for building binaries to run on the build machine tc-getBUILD_CC() { tc-getBUILD_PROG CC gcc "$@"; } # @FUNCTION: tc-getBUILD_CPP # @USAGE: [toolchain prefix] # @RETURN: name of the C preprocessor for building binaries to run on the build machine tc-getBUILD_CPP() { tc-getBUILD_PROG CPP "$(tc-getBUILD_CC) -E" "$@"; } # @FUNCTION: tc-getBUILD_CXX # @USAGE: [toolchain prefix] # @RETURN: name of the C++ compiler for building binaries to run on the build machine tc-getBUILD_CXX() { tc-getBUILD_PROG CXX g++ "$@"; } # @FUNCTION: tc-getBUILD_LD # @USAGE: [toolchain prefix] # @RETURN: name of the linker for building binaries to run on the build machine tc-getBUILD_LD() { tc-getBUILD_PROG LD ld "$@"; } # @FUNCTION: tc-getBUILD_STRIP # @USAGE: [toolchain prefix] # @RETURN: name of the strip program for building binaries to run on the build machine tc-getBUILD_STRIP() { tc-getBUILD_PROG STRIP strip "$@"; } # @FUNCTION: tc-getBUILD_NM # @USAGE: [toolchain prefix] # @RETURN: name of the symbol/object thingy for building binaries to run on the build machine tc-getBUILD_NM() { tc-getBUILD_PROG NM nm "$@"; } # @FUNCTION: tc-getBUILD_RANLIB # @USAGE: [toolchain prefix] # @RETURN: name of the archiver indexer for building binaries to run on the build machine tc-getBUILD_RANLIB() { tc-getBUILD_PROG RANLIB ranlib "$@"; } # @FUNCTION: tc-getBUILD_OBJCOPY # @USAGE: [toolchain prefix] # @RETURN: name of the object copier for building binaries to run on the build machine tc-getBUILD_OBJCOPY() { tc-getBUILD_PROG OBJCOPY objcopy "$@"; } # @FUNCTION: tc-getBUILD_PKG_CONFIG # @USAGE: [toolchain prefix] # @RETURN: name of the pkg-config tool for building binaries to run on the build machine tc-getBUILD_PKG_CONFIG() { tc-getBUILD_PROG PKG_CONFIG pkg-config "$@"; } # @FUNCTION: tc-getTARGET_CPP # @USAGE: [toolchain prefix] # @RETURN: name of the C preprocessor for the toolchain being built (or used) tc-getTARGET_CPP() { if [[ -n ${CTARGET} ]]; then _tc-getPROG CTARGET TARGET_CPP "gcc -E" "$@" else tc-getCPP "$@" fi } # @FUNCTION: tc-export # @USAGE: <list of toolchain variables> # @DESCRIPTION: # Quick way to export a bunch of compiler vars at once. tc-export() { local var for var in "$@" ; do [[ $(type -t "tc-get${var}") != "function" ]] && die "tc-export: invalid export variable '${var}'" "tc-get${var}" > /dev/null done } # @FUNCTION: tc-is-cross-compiler # @RETURN: Shell true if we are using a cross-compiler, shell false otherwise tc-is-cross-compiler() { [[ ${CBUILD:-${CHOST}} != ${CHOST} ]] } # @FUNCTION: tc-cpp-is-true # @USAGE: <condition> [cpp flags] # @RETURN: Shell true if the condition is true, shell false otherwise. # @DESCRIPTION: # Evaluate the given condition using the C preprocessor for CTARGET, if # defined, or CHOST. Additional arguments are passed through to the cpp # command. A typical condition would be in the form defined(__FOO__). tc-cpp-is-true() { local CONDITION=${1} shift local RESULT=$($(tc-getTARGET_CPP) "${@}" -P - <<-EOF 2>/dev/null #if ${CONDITION} true #endif EOF ) [[ ${RESULT} == true ]] } # @FUNCTION: tc-detect-is-softfloat # @RETURN: Shell true if detection was possible, shell false otherwise # @DESCRIPTION: # Detect whether the CTARGET (or CHOST) toolchain is a softfloat based # one by examining the toolchain's output, if possible. Outputs a value # alike tc-is-softfloat if detection was possible. tc-detect-is-softfloat() { # If fetching CPP falls back to the default (gcc -E) then fail # detection as this may not be the correct toolchain. [[ $(tc-getTARGET_CPP) == "gcc -E" ]] && return 1 case ${CTARGET:-${CHOST}} in # Avoid autodetection for bare-metal targets. bug #666896 *-newlib|*-elf|*-eabi) return 1 ;; # arm-unknown-linux-gnueabi is ambiguous. We used to treat it as # hardfloat but we now treat it as softfloat like most everyone # else. Check existing toolchains to respect existing systems. arm*) if tc-cpp-is-true "defined(__ARM_PCS_VFP)"; then echo "no" else # Confusingly __SOFTFP__ is defined only when # -mfloat-abi is soft, not softfp. if tc-cpp-is-true "defined(__SOFTFP__)"; then echo "yes" else echo "softfp" fi fi return 0 ;; *) return 1 ;; esac } # @FUNCTION: tc-tuple-is-softfloat # @RETURN: See tc-is-softfloat for the possible values. # @DESCRIPTION: # Determine whether the CTARGET (or CHOST) toolchain is a softfloat # based one solely from the tuple. tc-tuple-is-softfloat() { local CTARGET=${CTARGET:-${CHOST}} case ${CTARGET//_/-} in bfin*|h8300*) echo "only" ;; *-softfloat-*) echo "yes" ;; *-softfp-*) echo "softfp" ;; arm*-hardfloat-*|arm*eabihf) echo "no" ;; # bare-metal targets have their defaults. bug #666896 *-newlib|*-elf|*-eabi) echo "no" ;; arm*) echo "yes" ;; *) echo "no" ;; esac } # @FUNCTION: tc-is-softfloat # @DESCRIPTION: # See if this toolchain is a softfloat based one. # @CODE # The possible return values: # - only: the target is always softfloat (never had fpu) # - yes: the target should support softfloat # - softfp: (arm specific) the target should use hardfloat insns, but softfloat calling convention # - no: the target doesn't support softfloat # @CODE # This allows us to react differently where packages accept # softfloat flags in the case where support is optional, but # rejects softfloat flags where the target always lacks an fpu. tc-is-softfloat() { tc-detect-is-softfloat || tc-tuple-is-softfloat } # @FUNCTION: tc-is-static-only # @DESCRIPTION: # Return shell true if the target does not support shared libs, shell false # otherwise. tc-is-static-only() { local host=${CTARGET:-${CHOST}} # *MiNT doesn't have shared libraries, only platform so far [[ ${host} == *-mint* ]] } # @FUNCTION: tc-stack-grows-down # @DESCRIPTION: # Return shell true if the stack grows down. This is the default behavior # for the vast majority of systems out there and usually projects shouldn't # care about such internal details. tc-stack-grows-down() { # List the few that grow up. case ${ARCH} in hppa|metag) return 1 ;; esac # Assume all others grow down. return 0 } # @FUNCTION: tc-export_build_env # @USAGE: [compiler variables] # @DESCRIPTION: # Export common build related compiler settings. tc-export_build_env() { tc-export "$@" if tc-is-cross-compiler; then # Some build envs will initialize vars like: # : ${BUILD_LDFLAGS:-${LDFLAGS}} # So make sure all variables are non-empty. #526734 : ${BUILD_CFLAGS:=-O1 -pipe} : ${BUILD_CXXFLAGS:=-O1 -pipe} : ${BUILD_CPPFLAGS:= } : ${BUILD_LDFLAGS:= } else # https://bugs.gentoo.org/654424 : ${BUILD_CFLAGS:=${CFLAGS}} : ${BUILD_CXXFLAGS:=${CXXFLAGS}} : ${BUILD_CPPFLAGS:=${CPPFLAGS}} : ${BUILD_LDFLAGS:=${LDFLAGS}} fi export BUILD_{C,CXX,CPP,LD}FLAGS # Some packages use XXX_FOR_BUILD. local v for v in BUILD_{C,CXX,CPP,LD}FLAGS ; do export ${v#BUILD_}_FOR_BUILD="${!v}" done } # @FUNCTION: tc-env_build # @USAGE: <command> [command args] # @INTERNAL # @DESCRIPTION: # Setup the compile environment to the build tools and then execute the # specified command. We use tc-getBUILD_XX here so that we work with # all of the semi-[non-]standard env vars like $BUILD_CC which often # the target build system does not check. tc-env_build() { tc-export_build_env CFLAGS=${BUILD_CFLAGS} \ CXXFLAGS=${BUILD_CXXFLAGS} \ CPPFLAGS=${BUILD_CPPFLAGS} \ LDFLAGS=${BUILD_LDFLAGS} \ AR=$(tc-getBUILD_AR) \ AS=$(tc-getBUILD_AS) \ CC=$(tc-getBUILD_CC) \ CPP=$(tc-getBUILD_CPP) \ CXX=$(tc-getBUILD_CXX) \ LD=$(tc-getBUILD_LD) \ NM=$(tc-getBUILD_NM) \ PKG_CONFIG=$(tc-getBUILD_PKG_CONFIG) \ RANLIB=$(tc-getBUILD_RANLIB) \ "$@" } # @FUNCTION: econf_build # @USAGE: [econf flags] # @DESCRIPTION: # Sometimes we need to locally build up some tools to run on CBUILD because # the package has helper utils which are compiled+executed when compiling. # This won't work when cross-compiling as the CHOST is set to a target which # we cannot natively execute. # # For example, the python package will build up a local python binary using # a portable build system (configure+make), but then use that binary to run # local python scripts to build up other components of the overall python. # We cannot rely on the python binary in $PATH as that often times will be # a different version, or not even installed in the first place. Instead, # we compile the code in a different directory to run on CBUILD, and then # use that binary when compiling the main package to run on CHOST. # # For example, with newer EAPIs, you'd do something like: # @CODE # src_configure() { # ECONF_SOURCE=${S} # if tc-is-cross-compiler ; then # mkdir "${WORKDIR}"/${CBUILD} # pushd "${WORKDIR}"/${CBUILD} >/dev/null # econf_build --disable-some-unused-stuff # popd >/dev/null # fi # ... normal build paths ... # } # src_compile() { # if tc-is-cross-compiler ; then # pushd "${WORKDIR}"/${CBUILD} >/dev/null # emake one-or-two-build-tools # ln/mv build-tools to normal build paths in ${S}/ # popd >/dev/null # fi # ... normal build paths ... # } # @CODE econf_build() { local CBUILD=${CBUILD:-${CHOST}} tc-env_build econf --build=${CBUILD} --host=${CBUILD} "$@" } # @FUNCTION: tc-ld-is-gold # @USAGE: [toolchain prefix] # @DESCRIPTION: # Return true if the current linker is set to gold. tc-ld-is-gold() { local out # First check the linker directly. out=$($(tc-getLD "$@") --version 2>&1) if [[ ${out} == *"GNU gold"* ]] ; then return 0 fi # Then see if they're selecting gold via compiler flags. # Note: We're assuming they're using LDFLAGS to hold the # options and not CFLAGS/CXXFLAGS. local base="${T}/test-tc-gold" cat <<-EOF > "${base}.c" int main() { return 0; } EOF out=$($(tc-getCC "$@") ${CFLAGS} ${CPPFLAGS} ${LDFLAGS} -Wl,--version "${base}.c" -o "${base}" 2>&1) rm -f "${base}"* if [[ ${out} == *"GNU gold"* ]] ; then return 0 fi # No gold here! return 1 } # @FUNCTION: tc-ld-is-lld # @USAGE: [toolchain prefix] # @DESCRIPTION: # Return true if the current linker is set to lld. tc-ld-is-lld() { local out # First check the linker directly. out=$($(tc-getLD "$@") --version 2>&1) if [[ ${out} == *"LLD"* ]] ; then return 0 fi # Then see if they're selecting lld via compiler flags. # Note: We're assuming they're using LDFLAGS to hold the # options and not CFLAGS/CXXFLAGS. local base="${T}/test-tc-lld" cat <<-EOF > "${base}.c" int main() { return 0; } EOF out=$($(tc-getCC "$@") ${CFLAGS} ${CPPFLAGS} ${LDFLAGS} -Wl,--version "${base}.c" -o "${base}" 2>&1) rm -f "${base}"* if [[ ${out} == *"LLD"* ]] ; then return 0 fi # No lld here! return 1 } # @FUNCTION: tc-ld-disable-gold # @USAGE: [toolchain prefix] # @DESCRIPTION: # If the gold linker is currently selected, configure the compilation # settings so that we use the older bfd linker instead. tc-ld-disable-gold() { if ! tc-ld-is-gold "$@" ; then # They aren't using gold, so nothing to do! return fi ewarn "Forcing usage of the BFD linker instead of GOLD" # Set up LD to point directly to bfd if it's available. # We need to extract the first word in case there are flags appended # to its value (like multilib). #545218 local ld=$(tc-getLD "$@") local bfd_ld="${ld%% *}.bfd" local path_ld=$(which "${bfd_ld}" 2>/dev/null) [[ -e ${path_ld} ]] && export LD=${bfd_ld} # Set up LDFLAGS to select gold based on the gcc / clang version. local fallback="true" if tc-is-gcc; then local major=$(gcc-major-version "$@") local minor=$(gcc-minor-version "$@") if [[ ${major} -gt 4 ]] || [[ ${major} -eq 4 && ${minor} -ge 8 ]]; then # gcc-4.8+ supports -fuse-ld directly. export LDFLAGS="${LDFLAGS} -fuse-ld=bfd" fallback="false" fi elif tc-is-clang; then local major=$(clang-major-version "$@") local minor=$(clang-minor-version "$@") if [[ ${major} -gt 3 ]] || [[ ${major} -eq 3 && ${minor} -ge 5 ]]; then # clang-3.5+ supports -fuse-ld directly. export LDFLAGS="${LDFLAGS} -fuse-ld=bfd" fallback="false" fi fi if [[ ${fallback} == "true" ]] ; then # <=gcc-4.7 and <=clang-3.4 require some coercion. # Only works if bfd exists. if [[ -e ${path_ld} ]] ; then local d="${T}/bfd-linker" mkdir -p "${d}" ln -sf "${path_ld}" "${d}"/ld export LDFLAGS="${LDFLAGS} -B${d}" else die "unable to locate a BFD linker to bypass gold" fi fi } # @FUNCTION: tc-has-openmp # @USAGE: [toolchain prefix] # @DESCRIPTION: # See if the toolchain supports OpenMP. tc-has-openmp() { local base="${T}/test-tc-openmp" cat <<-EOF > "${base}.c" #include <omp.h> int main() { int nthreads, tid, ret = 0; #pragma omp parallel private(nthreads, tid) { tid = omp_get_thread_num(); nthreads = omp_get_num_threads(); ret += tid + nthreads; } return ret; } EOF $(tc-getCC "$@") -fopenmp "${base}.c" -o "${base}" >&/dev/null local ret=$? rm -f "${base}"* return ${ret} } # @FUNCTION: tc-check-openmp # @DESCRIPTION: # Test for OpenMP support with the current compiler and error out with # a clear error message, telling the user how to rectify the missing # OpenMP support that has been requested by the ebuild. Using this function # to test for OpenMP support should be preferred over tc-has-openmp and # printing a custom message, as it presents a uniform interface to the user. tc-check-openmp() { if ! tc-has-openmp; then eerror "Your current compiler does not support OpenMP!" if tc-is-gcc; then eerror "Enable OpenMP support by building sys-devel/gcc with USE=\"openmp\"." elif tc-is-clang; then eerror "OpenMP support in sys-devel/clang is provided by sys-libs/libomp." fi die "Active compiler does not have required support for OpenMP" fi } # @FUNCTION: tc-has-tls # @USAGE: [-s|-c|-l] [toolchain prefix] # @DESCRIPTION: # See if the toolchain supports thread local storage (TLS). Use -s to test the # compiler, -c to also test the assembler, and -l to also test the C library # (the default). tc-has-tls() { local base="${T}/test-tc-tls" cat <<-EOF > "${base}.c" int foo(int *i) { static __thread int j = 0; return *i ? j : *i; } EOF local flags case $1 in -s) flags="-S";; -c) flags="-c";; -l) ;; -*) die "Usage: tc-has-tls [-c|-l] [toolchain prefix]";; esac : ${flags:=-fPIC -shared -Wl,-z,defs} [[ $1 == -* ]] && shift $(tc-getCC "$@") ${flags} "${base}.c" -o "${base}" >&/dev/null local ret=$? rm -f "${base}"* return ${ret} } # Parse information from CBUILD/CHOST/CTARGET rather than # use external variables from the profile. tc-ninja_magic_to_arch() { ninj() { [[ ${type} == "kern" ]] && echo $1 || echo $2 ; } local type=$1 local host=$2 [[ -z ${host} ]] && host=${CTARGET:-${CHOST}} case ${host} in aarch64*) echo arm64;; alpha*) echo alpha;; arm*) echo arm;; avr*) ninj avr32 avr;; bfin*) ninj blackfin bfin;; c6x*) echo c6x;; cris*) echo cris;; frv*) echo frv;; hexagon*) echo hexagon;; hppa*) ninj parisc hppa;; i?86*) # Starting with linux-2.6.24, the 'x86_64' and 'i386' # trees have been unified into 'x86'. # FreeBSD still uses i386 if [[ ${type} == "kern" && ${host} == *freebsd* ]] ; then echo i386 else echo x86 fi ;; ia64*) echo ia64;; m68*) echo m68k;; metag*) echo metag;; microblaze*) echo microblaze;; mips*) echo mips;; nios2*) echo nios2;; nios*) echo nios;; or1k|or32*) echo openrisc;; powerpc*) # Starting with linux-2.6.15, the 'ppc' and 'ppc64' trees # have been unified into simply 'powerpc', but until 2.6.16, # ppc32 is still using ARCH="ppc" as default if [[ ${type} == "kern" ]] ; then echo powerpc elif [[ ${host} == powerpc64* ]] ; then echo ppc64 else echo ppc fi ;; riscv*) echo riscv;; s390*) echo s390;; score*) echo score;; sh64*) ninj sh64 sh;; sh*) echo sh;; sparc64*) ninj sparc64 sparc;; sparc*) [[ ${PROFILE_ARCH} == "sparc64" ]] \ && ninj sparc64 sparc \ || echo sparc ;; tile*) echo tile;; vax*) echo vax;; x86_64*freebsd*) echo amd64;; x86_64*) # Starting with linux-2.6.24, the 'x86_64' and 'i386' # trees have been unified into 'x86'. if [[ ${type} == "kern" ]] ; then echo x86 else echo amd64 fi ;; xtensa*) echo xtensa;; # since our usage of tc-arch is largely concerned with # normalizing inputs for testing ${CTARGET}, let's filter # other cross targets (mingw and such) into the unknown. *) echo unknown;; esac } # @FUNCTION: tc-arch-kernel # @USAGE: [toolchain prefix] # @RETURN: name of the kernel arch according to the compiler target tc-arch-kernel() { tc-ninja_magic_to_arch kern "$@" } # @FUNCTION: tc-arch # @USAGE: [toolchain prefix] # @RETURN: name of the portage arch according to the compiler target tc-arch() { tc-ninja_magic_to_arch portage "$@" } tc-endian() { local host=$1 [[ -z ${host} ]] && host=${CTARGET:-${CHOST}} host=${host%%-*} case ${host} in aarch64*be) echo big;; aarch64) echo little;; alpha*) echo little;; arm*b*) echo big;; arm*) echo little;; cris*) echo little;; hppa*) echo big;; i?86*) echo little;; ia64*) echo little;; m68*) echo big;; mips*l*) echo little;; mips*) echo big;; powerpc*le) echo little;; powerpc*) echo big;; riscv*) echo little;; s390*) echo big;; sh*b*) echo big;; sh*) echo little;; sparc*) echo big;; x86_64*) echo little;; *) echo wtf;; esac } # @FUNCTION: tc-get-compiler-type # @RETURN: keyword identifying the compiler: gcc, clang, pathcc, unknown tc-get-compiler-type() { local code=' #if defined(__PATHSCALE__) HAVE_PATHCC #elif defined(__clang__) HAVE_CLANG #elif defined(__GNUC__) HAVE_GCC #endif ' local res=$($(tc-getCPP "$@") -E -P - <<<"${code}") case ${res} in *HAVE_PATHCC*) echo pathcc;; *HAVE_CLANG*) echo clang;; *HAVE_GCC*) echo gcc;; *) echo unknown;; esac } # @FUNCTION: tc-is-gcc # @RETURN: Shell true if the current compiler is GCC, false otherwise. tc-is-gcc() { [[ $(tc-get-compiler-type) == gcc ]] } # @FUNCTION: tc-is-clang # @RETURN: Shell true if the current compiler is clang, false otherwise. tc-is-clang() { [[ $(tc-get-compiler-type) == clang ]] } # Internal func. The first argument is the version info to expand. # Query the preprocessor to improve compatibility across different # compilers rather than maintaining a --version flag matrix. #335943 _gcc_fullversion() { local ver="$1"; shift set -- $($(tc-getCPP "$@") -E -P - <<<"__GNUC__ __GNUC_MINOR__ __GNUC_PATCHLEVEL__") eval echo "$ver" } # @FUNCTION: gcc-fullversion # @RETURN: compiler version (major.minor.micro: [3.4.6]) gcc-fullversion() { _gcc_fullversion '$1.$2.$3' "$@" } # @FUNCTION: gcc-version # @RETURN: compiler version (major.minor: [3.4].6) gcc-version() { _gcc_fullversion '$1.$2' "$@" } # @FUNCTION: gcc-major-version # @RETURN: major compiler version (major: [3].4.6) gcc-major-version() { _gcc_fullversion '$1' "$@" } # @FUNCTION: gcc-minor-version # @RETURN: minor compiler version (minor: 3.[4].6) gcc-minor-version() { _gcc_fullversion '$2' "$@" } # @FUNCTION: gcc-micro-version # @RETURN: micro compiler version (micro: 3.4.[6]) gcc-micro-version() { _gcc_fullversion '$3' "$@" } # Internal func. Based on _gcc_fullversion() above. _clang_fullversion() { local ver="$1"; shift set -- $($(tc-getCPP "$@") -E -P - <<<"__clang_major__ __clang_minor__ __clang_patchlevel__") eval echo "$ver" } # @FUNCTION: clang-fullversion # @RETURN: compiler version (major.minor.micro: [3.4.6]) clang-fullversion() { _clang_fullversion '$1.$2.$3' "$@" } # @FUNCTION: clang-version # @RETURN: compiler version (major.minor: [3.4].6) clang-version() { _clang_fullversion '$1.$2' "$@" } # @FUNCTION: clang-major-version # @RETURN: major compiler version (major: [3].4.6) clang-major-version() { _clang_fullversion '$1' "$@" } # @FUNCTION: clang-minor-version # @RETURN: minor compiler version (minor: 3.[4].6) clang-minor-version() { _clang_fullversion '$2' "$@" } # @FUNCTION: clang-micro-version # @RETURN: micro compiler version (micro: 3.4.[6]) clang-micro-version() { _clang_fullversion '$3' "$@" } # Returns the installation directory - internal toolchain # function for use by _gcc-specs-exists (for flag-o-matic). _gcc-install-dir() { echo "$(LC_ALL=C $(tc-getCC) -print-search-dirs 2> /dev/null |\ awk '$1=="install:" {print $2}')" } # Returns true if the indicated specs file exists - internal toolchain # function for use by flag-o-matic. _gcc-specs-exists() { [[ -f $(_gcc-install-dir)/$1 ]] } # Returns requested gcc specs directive unprocessed - for used by # gcc-specs-directive() # Note; later specs normally overwrite earlier ones; however if a later # spec starts with '+' then it appends. # gcc -dumpspecs is parsed first, followed by files listed by "gcc -v" # as "Reading <file>", in order. Strictly speaking, if there's a # $(gcc_install_dir)/specs, the built-in specs aren't read, however by # the same token anything from 'gcc -dumpspecs' is overridden by # the contents of $(gcc_install_dir)/specs so the result is the # same either way. _gcc-specs-directive_raw() { local cc=$(tc-getCC) local specfiles=$(LC_ALL=C ${cc} -v 2>&1 | awk '$1=="Reading" {print $NF}') ${cc} -dumpspecs 2> /dev/null | cat - ${specfiles} | awk -v directive=$1 \ 'BEGIN { pspec=""; spec=""; outside=1 } $1=="*"directive":" { pspec=spec; spec=""; outside=0; next } outside || NF==0 || ( substr($1,1,1)=="*" && substr($1,length($1),1)==":" ) { outside=1; next } spec=="" && substr($0,1,1)=="+" { spec=pspec " " substr($0,2); next } { spec=spec $0 } END { print spec }' return 0 } # Return the requested gcc specs directive, with all included # specs expanded. # Note, it does not check for inclusion loops, which cause it # to never finish - but such loops are invalid for gcc and we're # assuming gcc is operational. gcc-specs-directive() { local directive subdname subdirective directive="$(_gcc-specs-directive_raw $1)" while [[ ${directive} == *%\(*\)* ]]; do subdname=${directive/*%\(} subdname=${subdname/\)*} subdirective="$(_gcc-specs-directive_raw ${subdname})" directive="${directive//\%(${subdname})/${subdirective}}" done echo "${directive}" return 0 } # Returns true if gcc sets relro gcc-specs-relro() { local directive directive=$(gcc-specs-directive link_command) [[ "${directive/\{!norelro:}" != "${directive}" ]] } # Returns true if gcc sets now gcc-specs-now() { local directive directive=$(gcc-specs-directive link_command) [[ "${directive/\{!nonow:}" != "${directive}" ]] } # Returns true if gcc builds PIEs gcc-specs-pie() { local directive directive=$(gcc-specs-directive cc1) [[ "${directive/\{!nopie:}" != "${directive}" ]] } # Returns true if gcc builds with the stack protector gcc-specs-ssp() { local directive directive=$(gcc-specs-directive cc1) [[ "${directive/\{!fno-stack-protector:}" != "${directive}" ]] } # Returns true if gcc upgrades fstack-protector to fstack-protector-all gcc-specs-ssp-to-all() { local directive directive=$(gcc-specs-directive cc1) [[ "${directive/\{!fno-stack-protector-all:}" != "${directive}" ]] } # Returns true if gcc builds with fno-strict-overflow gcc-specs-nostrict() { local directive directive=$(gcc-specs-directive cc1) [[ "${directive/\{!fstrict-overflow:}" != "${directive}" ]] } # Returns true if gcc builds with fstack-check gcc-specs-stack-check() { local directive directive=$(gcc-specs-directive cc1) [[ "${directive/\{!fno-stack-check:}" != "${directive}" ]] } # @FUNCTION: tc-enables-pie # @RETURN: Truth if the current compiler generates position-independent code (PIC) which can be linked into executables # @DESCRIPTION: # Return truth if the current compiler generates position-independent code (PIC) # which can be linked into executables. tc-enables-pie() { tc-cpp-is-true "defined(__PIE__)" ${CPPFLAGS} ${CFLAGS} } # @FUNCTION: tc-enables-ssp # @RETURN: Truth if the current compiler enables stack smashing protection (SSP) on at least minimal level # @DESCRIPTION: # Return truth if the current compiler enables stack smashing protection (SSP) # on level corresponding to any of the following options: # -fstack-protector # -fstack-protector-strong # -fstack-protector-all tc-enables-ssp() { tc-cpp-is-true "defined(__SSP__) || defined(__SSP_STRONG__) || defined(__SSP_ALL__)" ${CPPFLAGS} ${CFLAGS} } # @FUNCTION: tc-enables-ssp-strong # @RETURN: Truth if the current compiler enables stack smashing protection (SSP) on at least middle level # @DESCRIPTION: # Return truth if the current compiler enables stack smashing protection (SSP) # on level corresponding to any of the following options: # -fstack-protector-strong # -fstack-protector-all tc-enables-ssp-strong() { tc-cpp-is-true "defined(__SSP_STRONG__) || defined(__SSP_ALL__)" ${CPPFLAGS} ${CFLAGS} } # @FUNCTION: tc-enables-ssp-all # @RETURN: Truth if the current compiler enables stack smashing protection (SSP) on maximal level # @DESCRIPTION: # Return truth if the current compiler enables stack smashing protection (SSP) # on level corresponding to any of the following options: # -fstack-protector-all tc-enables-ssp-all() { tc-cpp-is-true "defined(__SSP_ALL__)" ${CPPFLAGS} ${CFLAGS} } # @FUNCTION: gen_usr_ldscript # @USAGE: [-a] <list of libs to create linker scripts for> # @DESCRIPTION: # This function is deprecated. Use the version from # usr-ldscript.eclass instead. gen_usr_ldscript() { ewarn "${FUNCNAME}: Please migrate to usr-ldscript.eclass" local lib libdir=$(get_libdir) output_format="" auto=false suffix=$(get_libname) [[ -z ${ED+set} ]] && local ED=${D%/}${EPREFIX}/ tc-is-static-only && return # We only care about stuffing / for the native ABI. #479448 if [[ $(type -t multilib_is_native_abi) == "function" ]] ; then multilib_is_native_abi || return 0 fi # Eventually we'd like to get rid of this func completely #417451 case ${CTARGET:-${CHOST}} in *-darwin*) ;; *-android*) return 0 ;; *linux*|*-freebsd*|*-openbsd*|*-netbsd*) use prefix && return 0 ;; *) return 0 ;; esac # Just make sure it exists dodir /usr/${libdir} if [[ $1 == "-a" ]] ; then auto=true shift dodir /${libdir} fi # OUTPUT_FORMAT gives hints to the linker as to what binary format # is referenced ... makes multilib saner local flags=( ${CFLAGS} ${LDFLAGS} -Wl,--verbose ) if $(tc-getLD) --version | grep -q 'GNU gold' ; then # If they're using gold, manually invoke the old bfd. #487696 local d="${T}/bfd-linker" mkdir -p "${d}" ln -sf $(which ${CHOST}-ld.bfd) "${d}"/ld flags+=( -B"${d}" ) fi output_format=$($(tc-getCC) "${flags[@]}" 2>&1 | sed -n 's/^OUTPUT_FORMAT("\([^"]*\)",.*/\1/p') [[ -n ${output_format} ]] && output_format="OUTPUT_FORMAT ( ${output_format} )" for lib in "$@" ; do local tlib if ${auto} ; then lib="lib${lib}${suffix}" else # Ensure /lib/${lib} exists to avoid dangling scripts/symlinks. # This especially is for AIX where $(get_libname) can return ".a", # so /lib/${lib} might be moved to /usr/lib/${lib} (by accident). [[ -r ${ED}/${libdir}/${lib} ]] || continue #TODO: better die here? fi case ${CTARGET:-${CHOST}} in *-darwin*) if ${auto} ; then tlib=$(scanmacho -qF'%S#F' "${ED}"/usr/${libdir}/${lib}) else tlib=$(scanmacho -qF'%S#F' "${ED}"/${libdir}/${lib}) fi [[ -z ${tlib} ]] && die "unable to read install_name from ${lib}" tlib=${tlib##*/} if ${auto} ; then mv "${ED}"/usr/${libdir}/${lib%${suffix}}.*${suffix#.} "${ED}"/${libdir}/ || die # some install_names are funky: they encode a version if [[ ${tlib} != ${lib%${suffix}}.*${suffix#.} ]] ; then mv "${ED}"/usr/${libdir}/${tlib%${suffix}}.*${suffix#.} "${ED}"/${libdir}/ || die fi rm -f "${ED}"/${libdir}/${lib} fi # Mach-O files have an id, which is like a soname, it tells how # another object linking against this lib should reference it. # Since we moved the lib from usr/lib into lib this reference is # wrong. Hence, we update it here. We don't configure with # libdir=/lib because that messes up libtool files. # Make sure we don't lose the specific version, so just modify the # existing install_name if [[ ! -w "${ED}/${libdir}/${tlib}" ]] ; then chmod u+w "${ED}${libdir}/${tlib}" # needed to write to it local nowrite=yes fi install_name_tool \ -id "${EPREFIX}"/${libdir}/${tlib} \ "${ED}"/${libdir}/${tlib} || die "install_name_tool failed" [[ -n ${nowrite} ]] && chmod u-w "${ED}${libdir}/${tlib}" # Now as we don't use GNU binutils and our linker doesn't # understand linker scripts, just create a symlink. pushd "${ED}/usr/${libdir}" > /dev/null ln -snf "../../${libdir}/${tlib}" "${lib}" popd > /dev/null ;; *) if ${auto} ; then tlib=$(scanelf -qF'%S#F' "${ED}"/usr/${libdir}/${lib}) [[ -z ${tlib} ]] && die "unable to read SONAME from ${lib}" mv "${ED}"/usr/${libdir}/${lib}* "${ED}"/${libdir}/ || die # some SONAMEs are funky: they encode a version before the .so if [[ ${tlib} != ${lib}* ]] ; then mv "${ED}"/usr/${libdir}/${tlib}* "${ED}"/${libdir}/ || die fi rm -f "${ED}"/${libdir}/${lib} else tlib=${lib} fi cat > "${ED}/usr/${libdir}/${lib}" <<-END_LDSCRIPT /* GNU ld script Since Gentoo has critical dynamic libraries in /lib, and the static versions in /usr/lib, we need to have a "fake" dynamic lib in /usr/lib, otherwise we run into linking problems. This "fake" dynamic lib is a linker script that redirects the linker to the real lib. And yes, this works in the cross- compiling scenario as the sysroot-ed linker will prepend the real path. See bug https://bugs.gentoo.org/4411 for more info. */ ${output_format} GROUP ( ${EPREFIX}/${libdir}/${tlib} ) END_LDSCRIPT ;; esac fperms a+x "/usr/${libdir}/${lib}" || die "could not change perms on ${lib}" done } fi