aboutsummaryrefslogtreecommitdiff
blob: 628f91c277908777b268b585d83d8794f1fcd945 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
:mod:`enum` --- Support for enumerations
========================================

.. module:: enum
   :synopsis: Implementation of an enumeration class.

.. :moduleauthor:: Ethan Furman <ethan@stoneleaf.us>
.. :sectionauthor:: Barry Warsaw <barry@python.org>,
.. :sectionauthor:: Eli Bendersky <eliben@gmail.com>,
.. :sectionauthor:: Ethan Furman <ethan@stoneleaf.us>

.. versionadded:: 3.4

**Source code:** :source:`Lib/enum.py`

----------------

An enumeration is a set of symbolic names (members) bound to unique,
constant values.  Within an enumeration, the members can be compared
by identity, and the enumeration itself can be iterated over.


Module Contents
---------------

This module defines two enumeration classes that can be used to define unique
sets of names and values: :class:`Enum` and :class:`IntEnum`.  It also defines
one decorator, :func:`unique`.

.. class:: Enum

    Base class for creating enumerated constants.  See section
    `Functional API`_ for an alternate construction syntax.

.. class:: IntEnum

    Base class for creating enumerated constants that are also
    subclasses of :class:`int`.

.. function:: unique

    Enum class decorator that ensures only one name is bound to any one value.


Creating an Enum
----------------

Enumerations are created using the :keyword:`class` syntax, which makes them
easy to read and write.  An alternative creation method is described in
`Functional API`_.  To define an enumeration, subclass :class:`Enum` as
follows::

    >>> from enum import Enum
    >>> class Color(Enum):
    ...     red = 1
    ...     green = 2
    ...     blue = 3
    ...

.. note:: Nomenclature

  - The class :class:`Color` is an *enumeration* (or *enum*)
  - The attributes :attr:`Color.red`, :attr:`Color.green`, etc., are
    *enumeration members* (or *enum members*).
  - The enum members have *names* and *values* (the name of
    :attr:`Color.red` is ``red``, the value of :attr:`Color.blue` is
    ``3``, etc.)

.. note::

    Even though we use the :keyword:`class` syntax to create Enums, Enums
    are not normal Python classes.  See `How are Enums different?`_ for
    more details.

Enumeration members have human readable string representations::

    >>> print(Color.red)
    Color.red

...while their ``repr`` has more information::

    >>> print(repr(Color.red))
    <Color.red: 1>

The *type* of an enumeration member is the enumeration it belongs to::

    >>> type(Color.red)
    <enum 'Color'>
    >>> isinstance(Color.green, Color)
    True
    >>>

Enum members also have a property that contains just their item name::

    >>> print(Color.red.name)
    red

Enumerations support iteration, in definition order::

    >>> class Shake(Enum):
    ...     vanilla = 7
    ...     chocolate = 4
    ...     cookies = 9
    ...     mint = 3
    ...
    >>> for shake in Shake:
    ...     print(shake)
    ...
    Shake.vanilla
    Shake.chocolate
    Shake.cookies
    Shake.mint

Enumeration members are hashable, so they can be used in dictionaries and sets::

    >>> apples = {}
    >>> apples[Color.red] = 'red delicious'
    >>> apples[Color.green] = 'granny smith'
    >>> apples == {Color.red: 'red delicious', Color.green: 'granny smith'}
    True


Programmatic access to enumeration members and their attributes
---------------------------------------------------------------

Sometimes it's useful to access members in enumerations programmatically (i.e.
situations where ``Color.red`` won't do because the exact color is not known
at program-writing time).  ``Enum`` allows such access::

    >>> Color(1)
    <Color.red: 1>
    >>> Color(3)
    <Color.blue: 3>

If you want to access enum members by *name*, use item access::

    >>> Color['red']
    <Color.red: 1>
    >>> Color['green']
    <Color.green: 2>

If have an enum member and need its :attr:`name` or :attr:`value`::

    >>> member = Color.red
    >>> member.name
    'red'
    >>> member.value
    1


Duplicating enum members and values
-----------------------------------

Having two enum members with the same name is invalid::

    >>> class Shape(Enum):
    ...     square = 2
    ...     square = 3
    ...
    Traceback (most recent call last):
    ...
    TypeError: Attempted to reuse key: 'square'

However, two enum members are allowed to have the same value.  Given two members
A and B with the same value (and A defined first), B is an alias to A.  By-value
lookup of the value of A and B will return A.  By-name lookup of B will also
return A::

    >>> class Shape(Enum):
    ...     square = 2
    ...     diamond = 1
    ...     circle = 3
    ...     alias_for_square = 2
    ...
    >>> Shape.square
    <Shape.square: 2>
    >>> Shape.alias_for_square
    <Shape.square: 2>
    >>> Shape(2)
    <Shape.square: 2>

.. note::

    Attempting to create a member with the same name as an already
    defined attribute (another member, a method, etc.) or attempting to create
    an attribute with the same name as a member is not allowed.


Ensuring unique enumeration values
----------------------------------

By default, enumerations allow multiple names as aliases for the same value.
When this behavior isn't desired, the following decorator can be used to
ensure each value is used only once in the enumeration:

.. decorator:: unique

A :keyword:`class` decorator specifically for enumerations.  It searches an
enumeration's :attr:`__members__` gathering any aliases it finds; if any are
found :exc:`ValueError` is raised with the details::

    >>> from enum import Enum, unique
    >>> @unique
    ... class Mistake(Enum):
    ...     one = 1
    ...     two = 2
    ...     three = 3
    ...     four = 3
    ...
    Traceback (most recent call last):
    ...
    ValueError: duplicate values found in <enum 'Mistake'>: four -> three


Iteration
---------

Iterating over the members of an enum does not provide the aliases::

    >>> list(Shape)
    [<Shape.square: 2>, <Shape.diamond: 1>, <Shape.circle: 3>]

The special attribute ``__members__`` is an ordered dictionary mapping names
to members.  It includes all names defined in the enumeration, including the
aliases::

    >>> for name, member in Shape.__members__.items():
    ...     name, member
    ...
    ('square', <Shape.square: 2>)
    ('diamond', <Shape.diamond: 1>)
    ('circle', <Shape.circle: 3>)
    ('alias_for_square', <Shape.square: 2>)

The ``__members__`` attribute can be used for detailed programmatic access to
the enumeration members.  For example, finding all the aliases::

    >>> [name for name, member in Shape.__members__.items() if member.name != name]
    ['alias_for_square']


Comparisons
-----------

Enumeration members are compared by identity::

    >>> Color.red is Color.red
    True
    >>> Color.red is Color.blue
    False
    >>> Color.red is not Color.blue
    True

Ordered comparisons between enumeration values are *not* supported.  Enum
members are not integers (but see `IntEnum`_ below)::

    >>> Color.red < Color.blue
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
    TypeError: unorderable types: Color() < Color()

Equality comparisons are defined though::

    >>> Color.blue == Color.red
    False
    >>> Color.blue != Color.red
    True
    >>> Color.blue == Color.blue
    True

Comparisons against non-enumeration values will always compare not equal
(again, :class:`IntEnum` was explicitly designed to behave differently, see
below)::

    >>> Color.blue == 2
    False


Allowed members and attributes of enumerations
----------------------------------------------

The examples above use integers for enumeration values.  Using integers is
short and handy (and provided by default by the `Functional API`_), but not
strictly enforced.  In the vast majority of use-cases, one doesn't care what
the actual value of an enumeration is.  But if the value *is* important,
enumerations can have arbitrary values.

Enumerations are Python classes, and can have methods and special methods as
usual.  If we have this enumeration::

    >>> class Mood(Enum):
    ...     funky = 1
    ...     happy = 3
    ...
    ...     def describe(self):
    ...         # self is the member here
    ...         return self.name, self.value
    ...
    ...     def __str__(self):
    ...         return 'my custom str! {0}'.format(self.value)
    ...
    ...     @classmethod
    ...     def favorite_mood(cls):
    ...         # cls here is the enumeration
    ...         return cls.happy
    ...

Then::

    >>> Mood.favorite_mood()
    <Mood.happy: 3>
    >>> Mood.happy.describe()
    ('happy', 3)
    >>> str(Mood.funky)
    'my custom str! 1'

The rules for what is allowed are as follows: _sunder_ names (starting and
ending with a single underscore) are reserved by enum and cannot be used;
all other attributes defined within an enumeration will become members of this
enumeration, with the exception of *__dunder__* names and descriptors (methods
are also descriptors).

Note:  if your enumeration defines :meth:`__new__` and/or :meth:`__init__` then
whatever value(s) were given to the enum member will be passed into those
methods.  See `Planet`_ for an example.


Restricted subclassing of enumerations
--------------------------------------

Subclassing an enumeration is allowed only if the enumeration does not define
any members.  So this is forbidden::

    >>> class MoreColor(Color):
    ...     pink = 17
    ...
    Traceback (most recent call last):
    ...
    TypeError: Cannot extend enumerations

But this is allowed::

    >>> class Foo(Enum):
    ...     def some_behavior(self):
    ...         pass
    ...
    >>> class Bar(Foo):
    ...     happy = 1
    ...     sad = 2
    ...

Allowing subclassing of enums that define members would lead to a violation of
some important invariants of types and instances.  On the other hand, it makes
sense to allow sharing some common behavior between a group of enumerations.
(See `OrderedEnum`_ for an example.)


Pickling
--------

Enumerations can be pickled and unpickled::

    >>> from test.test_enum import Fruit
    >>> from pickle import dumps, loads
    >>> Fruit.tomato is loads(dumps(Fruit.tomato))
    True

The usual restrictions for pickling apply: picklable enums must be defined in
the top level of a module, since unpickling requires them to be importable
from that module.

.. note::

    With pickle protocol version 4 it is possible to easily pickle enums
    nested in other classes.

It is possible to modify how Enum members are pickled/unpickled by defining
:meth:`__reduce_ex__` in the enumeration class.


Functional API
--------------

The :class:`Enum` class is callable, providing the following functional API::

    >>> Animal = Enum('Animal', 'ant bee cat dog')
    >>> Animal
    <enum 'Animal'>
    >>> Animal.ant
    <Animal.ant: 1>
    >>> Animal.ant.value
    1
    >>> list(Animal)
    [<Animal.ant: 1>, <Animal.bee: 2>, <Animal.cat: 3>, <Animal.dog: 4>]

The semantics of this API resemble :class:`~collections.namedtuple`. The first
argument of the call to :class:`Enum` is the name of the enumeration.

The second argument is the *source* of enumeration member names.  It can be a
whitespace-separated string of names, a sequence of names, a sequence of
2-tuples with key/value pairs, or a mapping (e.g. dictionary) of names to
values.  The last two options enable assigning arbitrary values to
enumerations; the others auto-assign increasing integers starting with 1.  A
new class derived from :class:`Enum` is returned.  In other words, the above
assignment to :class:`Animal` is equivalent to::

    >>> class Animals(Enum):
    ...     ant = 1
    ...     bee = 2
    ...     cat = 3
    ...     dog = 4
    ...

The reason for defaulting to ``1`` as the starting number and not ``0`` is
that ``0`` is ``False`` in a boolean sense, but enum members all evaluate
to ``True``.

Pickling enums created with the functional API can be tricky as frame stack
implementation details are used to try and figure out which module the
enumeration is being created in (e.g. it will fail if you use a utility
function in separate module, and also may not work on IronPython or Jython).
The solution is to specify the module name explicitly as follows::

    >>> Animals = Enum('Animals', 'ant bee cat dog', module=__name__)

.. warning::

    If ``module`` is not supplied, and Enum cannot determine what it is,
    the new Enum members will not be unpicklable; to keep errors closer to
    the source, pickling will be disabled.

The new pickle protocol 4 also, in some circumstances, relies on
:attr:`__qualname__` being set to the location where pickle will be able
to find the class.  For example, if the class was made available in class
SomeData in the global scope::

    >>> Animals = Enum('Animals', 'ant bee cat dog', qualname='SomeData.Animals')

The complete signature is::

    Enum(value='NewEnumName', names=<...>, *, module='...', qualname='...', type=<mixed-in class>)

:value: What the new Enum class will record as its name.

:names: The Enum members.  This can be a whitespace or comma seperated string
  (values will start at 1)::

    'red green blue' | 'red,green,blue' | 'red, green, blue'

  or an iterator of (name, value) pairs::

    [('cyan', 4), ('magenta', 5), ('yellow', 6)]

  or a mapping::

    {'chartruese': 7, 'sea_green': 11, 'rosemary': 42}

:module: name of module where new Enum class can be found.

:qualname: where in module new Enum class can be found.

:type: type to mix in to new Enum class.


Derived Enumerations
--------------------

IntEnum
^^^^^^^

A variation of :class:`Enum` is provided which is also a subclass of
:class:`int`.  Members of an :class:`IntEnum` can be compared to integers;
by extension, integer enumerations of different types can also be compared
to each other::

    >>> from enum import IntEnum
    >>> class Shape(IntEnum):
    ...     circle = 1
    ...     square = 2
    ...
    >>> class Request(IntEnum):
    ...     post = 1
    ...     get = 2
    ...
    >>> Shape == 1
    False
    >>> Shape.circle == 1
    True
    >>> Shape.circle == Request.post
    True

However, they still can't be compared to standard :class:`Enum` enumerations::

    >>> class Shape(IntEnum):
    ...     circle = 1
    ...     square = 2
    ...
    >>> class Color(Enum):
    ...     red = 1
    ...     green = 2
    ...
    >>> Shape.circle == Color.red
    False

:class:`IntEnum` values behave like integers in other ways you'd expect::

    >>> int(Shape.circle)
    1
    >>> ['a', 'b', 'c'][Shape.circle]
    'b'
    >>> [i for i in range(Shape.square)]
    [0, 1]

For the vast majority of code, :class:`Enum` is strongly recommended,
since :class:`IntEnum` breaks some semantic promises of an enumeration (by
being comparable to integers, and thus by transitivity to other
unrelated enumerations).  It should be used only in special cases where
there's no other choice; for example, when integer constants are
replaced with enumerations and backwards compatibility is required with code
that still expects integers.


Others
^^^^^^

While :class:`IntEnum` is part of the :mod:`enum` module, it would be very
simple to implement independently::

    class IntEnum(int, Enum):
        pass

This demonstrates how similar derived enumerations can be defined; for example
a :class:`StrEnum` that mixes in :class:`str` instead of :class:`int`.

Some rules:

1. When subclassing :class:`Enum`, mix-in types must appear before
   :class:`Enum` itself in the sequence of bases, as in the :class:`IntEnum`
   example above.
2. While :class:`Enum` can have members of any type, once you mix in an
   additional type, all the members must have values of that type, e.g.
   :class:`int` above.  This restriction does not apply to mix-ins which only
   add methods and don't specify another data type such as :class:`int` or
   :class:`str`.
3. When another data type is mixed in, the :attr:`value` attribute is *not the
   same* as the enum member itself, although it is equivalant and will compare
   equal.
4. %-style formatting:  `%s` and `%r` call :class:`Enum`'s :meth:`__str__` and
   :meth:`__repr__` respectively; other codes (such as `%i` or `%h` for
   IntEnum) treat the enum member as its mixed-in type.
5. :meth:`str.__format__` (or :func:`format`) will use the mixed-in
   type's :meth:`__format__`.  If the :class:`Enum`'s :func:`str` or
   :func:`repr` is desired use the `!s` or `!r` :class:`str` format codes.


Interesting examples
--------------------

While :class:`Enum` and :class:`IntEnum` are expected to cover the majority of
use-cases, they cannot cover them all.  Here are recipes for some different
types of enumerations that can be used directly, or as examples for creating
one's own.


AutoNumber
^^^^^^^^^^

Avoids having to specify the value for each enumeration member::

    >>> class AutoNumber(Enum):
    ...     def __new__(cls):
    ...         value = len(cls.__members__) + 1
    ...         obj = object.__new__(cls)
    ...         obj._value_ = value
    ...         return obj
    ...
    >>> class Color(AutoNumber):
    ...     red = ()
    ...     green = ()
    ...     blue = ()
    ...
    >>> Color.green.value == 2
    True

.. note::

    The :meth:`__new__` method, if defined, is used during creation of the Enum
    members; it is then replaced by Enum's :meth:`__new__` which is used after
    class creation for lookup of existing members.  Due to the way Enums are
    supposed to behave, there is no way to customize Enum's :meth:`__new__`.


OrderedEnum
^^^^^^^^^^^

An ordered enumeration that is not based on :class:`IntEnum` and so maintains
the normal :class:`Enum` invariants (such as not being comparable to other
enumerations)::

    >>> class OrderedEnum(Enum):
    ...     def __ge__(self, other):
    ...         if self.__class__ is other.__class__:
    ...             return self.value >= other.value
    ...         return NotImplemented
    ...     def __gt__(self, other):
    ...         if self.__class__ is other.__class__:
    ...             return self.value > other.value
    ...         return NotImplemented
    ...     def __le__(self, other):
    ...         if self.__class__ is other.__class__:
    ...             return self.value <= other.value
    ...         return NotImplemented
    ...     def __lt__(self, other):
    ...         if self.__class__ is other.__class__:
    ...             return self.value < other.value
    ...         return NotImplemented
    ...
    >>> class Grade(OrderedEnum):
    ...     A = 5
    ...     B = 4
    ...     C = 3
    ...     D = 2
    ...     F = 1
    ...
    >>> Grade.C < Grade.A
    True


DuplicateFreeEnum
^^^^^^^^^^^^^^^^^

Raises an error if a duplicate member name is found instead of creating an
alias::

    >>> class DuplicateFreeEnum(Enum):
    ...     def __init__(self, *args):
    ...         cls = self.__class__
    ...         if any(self.value == e.value for e in cls):
    ...             a = self.name
    ...             e = cls(self.value).name
    ...             raise ValueError(
    ...                 "aliases not allowed in DuplicateFreeEnum:  %r --> %r"
    ...                 % (a, e))
    ...
    >>> class Color(DuplicateFreeEnum):
    ...     red = 1
    ...     green = 2
    ...     blue = 3
    ...     grene = 2
    ...
    Traceback (most recent call last):
    ...
    ValueError: aliases not allowed in DuplicateFreeEnum:  'grene' --> 'green'

.. note::

    This is a useful example for subclassing Enum to add or change other
    behaviors as well as disallowing aliases.  If the only desired change is
    disallowing aliases, the :func:`unique` decorator can be used instead.


Planet
^^^^^^

If :meth:`__new__` or :meth:`__init__` is defined the value of the enum member
will be passed to those methods::

    >>> class Planet(Enum):
    ...     MERCURY = (3.303e+23, 2.4397e6)
    ...     VENUS   = (4.869e+24, 6.0518e6)
    ...     EARTH   = (5.976e+24, 6.37814e6)
    ...     MARS    = (6.421e+23, 3.3972e6)
    ...     JUPITER = (1.9e+27,   7.1492e7)
    ...     SATURN  = (5.688e+26, 6.0268e7)
    ...     URANUS  = (8.686e+25, 2.5559e7)
    ...     NEPTUNE = (1.024e+26, 2.4746e7)
    ...     def __init__(self, mass, radius):
    ...         self.mass = mass       # in kilograms
    ...         self.radius = radius   # in meters
    ...     @property
    ...     def surface_gravity(self):
    ...         # universal gravitational constant  (m3 kg-1 s-2)
    ...         G = 6.67300E-11
    ...         return G * self.mass / (self.radius * self.radius)
    ...
    >>> Planet.EARTH.value
    (5.976e+24, 6378140.0)
    >>> Planet.EARTH.surface_gravity
    9.802652743337129


How are Enums different?
------------------------

Enums have a custom metaclass that affects many aspects of both derived Enum
classes and their instances (members).


Enum Classes
^^^^^^^^^^^^

The :class:`EnumMeta` metaclass is responsible for providing the
:meth:`__contains__`, :meth:`__dir__`, :meth:`__iter__` and other methods that
allow one to do things with an :class:`Enum` class that fail on a typical
class, such as `list(Color)` or `some_var in Color`.  :class:`EnumMeta` is
responsible for ensuring that various other methods on the final :class:`Enum`
class are correct (such as :meth:`__new__`, :meth:`__getnewargs__`,
:meth:`__str__` and :meth:`__repr__`)


Enum Members (aka instances)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The most interesting thing about Enum members is that they are singletons.
:class:`EnumMeta` creates them all while it is creating the :class:`Enum`
class itself, and then puts a custom :meth:`__new__` in place to ensure
that no new ones are ever instantiated by returning only the existing
member instances.


Finer Points
^^^^^^^^^^^^

Enum members are instances of an Enum class, and even though they are
accessible as `EnumClass.member`, they are not accessible directly from
the member::

    >>> Color.red
    <Color.red: 1>
    >>> Color.red.blue
    Traceback (most recent call last):
    ...
    AttributeError: 'Color' object has no attribute 'blue'

Likewise, the :attr:`__members__` is only available on the class.

If you give your :class:`Enum` subclass extra methods, like the `Planet`_
class above, those methods will show up in a :func:`dir` of the member,
but not of the class::

    >>> dir(Planet)
    ['EARTH', 'JUPITER', 'MARS', 'MERCURY', 'NEPTUNE', 'SATURN', 'URANUS', 'VENUS', '__class__', '__doc__', '__members__', '__module__']
    >>> dir(Planet.EARTH)
    ['__class__', '__doc__', '__module__', 'name', 'surface_gravity', 'value']

A :meth:`__new__` method will only be used for the creation of the
:class:`Enum` members -- after that it is replaced.  This means if you wish to
change how :class:`Enum` members are looked up you either have to write a
helper function or a :func:`classmethod`.