aboutsummaryrefslogtreecommitdiff
blob: 52261425b0f1af32c17328ea5e0a5bb6f230df47 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
/* Benchmark malloc and free functions.
   Copyright (C) 2013-2019 Free Software Foundation, Inc.
   This file is part of the GNU C Library.

   The GNU C Library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
   License as published by the Free Software Foundation; either
   version 2.1 of the License, or (at your option) any later version.

   The GNU C Library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Lesser General Public License for more details.

   You should have received a copy of the GNU Lesser General Public
   License along with the GNU C Library; if not, see
   <http://www.gnu.org/licenses/>.  */

#include <errno.h>
#include <math.h>
#include <pthread.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>
#include <sys/resource.h>
#include <unistd.h>

#include "bench-timing.h"
#include "json-lib.h"

/* Benchmark duration in seconds.  */
#define BENCHMARK_DURATION	60
#define RAND_SEED		88

#ifndef NUM_THREADS
# define NUM_THREADS 1
#endif

/* Maximum memory that can be allocated at any one time is:

   NUM_THREADS * WORKING_SET_SIZE * MAX_ALLOCATION_SIZE

   However due to the distribution of the random block sizes
   the typical amount allocated will be much smaller.  */
#define WORKING_SET_SIZE	1024

#define MIN_ALLOCATION_SIZE	4
#define MAX_ALLOCATION_SIZE	32768

/* Get a random block size with an inverse square distribution.  */
static unsigned int
get_block_size (unsigned int rand_data)
{
  /* Inverse square.  */
  const float exponent = -2;
  /* Minimum value of distribution.  */
  const float dist_min = MIN_ALLOCATION_SIZE;
  /* Maximum value of distribution.  */
  const float dist_max = MAX_ALLOCATION_SIZE;

  float min_pow = powf (dist_min, exponent + 1);
  float max_pow = powf (dist_max, exponent + 1);

  float r = (float) rand_data / RAND_MAX;

  return (unsigned int) powf ((max_pow - min_pow) * r + min_pow,
			      1 / (exponent + 1));
}

#define NUM_BLOCK_SIZES	8000
#define NUM_OFFSETS	((WORKING_SET_SIZE) * 4)

static unsigned int random_block_sizes[NUM_BLOCK_SIZES];
static unsigned int random_offsets[NUM_OFFSETS];

static void
init_random_values (void)
{
  for (size_t i = 0; i < NUM_BLOCK_SIZES; i++)
    random_block_sizes[i] = get_block_size (rand ());

  for (size_t i = 0; i < NUM_OFFSETS; i++)
    random_offsets[i] = rand () % WORKING_SET_SIZE;
}

static unsigned int
get_random_block_size (unsigned int *state)
{
  unsigned int idx = *state;

  if (idx >= NUM_BLOCK_SIZES - 1)
    idx = 0;
  else
    idx++;

  *state = idx;

  return random_block_sizes[idx];
}

static unsigned int
get_random_offset (unsigned int *state)
{
  unsigned int idx = *state;

  if (idx >= NUM_OFFSETS - 1)
    idx = 0;
  else
    idx++;

  *state = idx;

  return random_offsets[idx];
}

static volatile bool timeout;

static void
alarm_handler (int signum)
{
  timeout = true;
}

/* Allocate and free blocks in a random order.  */
static size_t
malloc_benchmark_loop (void **ptr_arr)
{
  unsigned int offset_state = 0, block_state = 0;
  size_t iters = 0;

  while (!timeout)
    {
      unsigned int next_idx = get_random_offset (&offset_state);
      unsigned int next_block = get_random_block_size (&block_state);

      free (ptr_arr[next_idx]);

      ptr_arr[next_idx] = malloc (next_block);

      iters++;
    }

  return iters;
}

struct thread_args
{
  size_t iters;
  void **working_set;
  timing_t elapsed;
};

static void *
benchmark_thread (void *arg)
{
  struct thread_args *args = (struct thread_args *) arg;
  size_t iters;
  void *thread_set = args->working_set;
  timing_t start, stop;

  TIMING_NOW (start);
  iters = malloc_benchmark_loop (thread_set);
  TIMING_NOW (stop);

  TIMING_DIFF (args->elapsed, start, stop);
  args->iters = iters;

  return NULL;
}

static timing_t
do_benchmark (size_t num_threads, size_t *iters)
{
  timing_t elapsed = 0;

  if (num_threads == 1)
    {
      timing_t start, stop;
      void *working_set[WORKING_SET_SIZE];

      memset (working_set, 0, sizeof (working_set));

      TIMING_NOW (start);
      *iters = malloc_benchmark_loop (working_set);
      TIMING_NOW (stop);

      TIMING_DIFF (elapsed, start, stop);
    }
  else
    {
      struct thread_args args[num_threads];
      void *working_set[num_threads][WORKING_SET_SIZE];
      pthread_t threads[num_threads];

      memset (working_set, 0, sizeof (working_set));

      *iters = 0;

      for (size_t i = 0; i < num_threads; i++)
	{
	  args[i].working_set = working_set[i];
	  pthread_create(&threads[i], NULL, benchmark_thread, &args[i]);
	}

      for (size_t i = 0; i < num_threads; i++)
	{
	  pthread_join(threads[i], NULL);
	  TIMING_ACCUM (elapsed, args[i].elapsed);
	  *iters += args[i].iters;
	}
    }
  return elapsed;
}

static void usage(const char *name)
{
  fprintf (stderr, "%s: <num_threads>\n", name);
  exit (1);
}

int
main (int argc, char **argv)
{
  timing_t cur;
  size_t iters = 0, num_threads = 1;
  json_ctx_t json_ctx;
  double d_total_s, d_total_i;
  struct sigaction act;

  if (argc == 1)
    num_threads = 1;
  else if (argc == 2)
    {
      long ret;

      errno = 0;
      ret = strtol(argv[1], NULL, 10);

      if (errno || ret == 0)
	usage(argv[0]);

      num_threads = ret;
    }
  else
    usage(argv[0]);

  init_random_values ();

  json_init (&json_ctx, 0, stdout);

  json_document_begin (&json_ctx);

  json_attr_string (&json_ctx, "timing_type", TIMING_TYPE);

  json_attr_object_begin (&json_ctx, "functions");

  json_attr_object_begin (&json_ctx, "malloc");

  json_attr_object_begin (&json_ctx, "");

  memset (&act, 0, sizeof (act));
  act.sa_handler = &alarm_handler;

  sigaction (SIGALRM, &act, NULL);

  alarm (BENCHMARK_DURATION);

  cur = do_benchmark (num_threads, &iters);

  struct rusage usage;
  getrusage(RUSAGE_SELF, &usage);

  d_total_s = cur;
  d_total_i = iters;

  json_attr_double (&json_ctx, "duration", d_total_s);
  json_attr_double (&json_ctx, "iterations", d_total_i);
  json_attr_double (&json_ctx, "time_per_iteration", d_total_s / d_total_i);
  json_attr_double (&json_ctx, "max_rss", usage.ru_maxrss);

  json_attr_double (&json_ctx, "threads", num_threads);
  json_attr_double (&json_ctx, "min_size", MIN_ALLOCATION_SIZE);
  json_attr_double (&json_ctx, "max_size", MAX_ALLOCATION_SIZE);
  json_attr_double (&json_ctx, "random_seed", RAND_SEED);

  json_attr_object_end (&json_ctx);

  json_attr_object_end (&json_ctx);

  json_attr_object_end (&json_ctx);

  json_document_end (&json_ctx);

  return 0;
}