1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
|
"""Flow Graph Transformation
The difference between simplification and transformation is that
transformation is based on annotations; it runs after the annotator
completed.
"""
from rpython.flowspace.model import (
SpaceOperation, Variable, Constant, Link, checkgraph)
from rpython.annotator import model as annmodel
from rpython.rtyper.lltypesystem import lltype
def checkgraphs(self, blocks):
seen = set()
for block in blocks:
graph = self.annotated[block]
if graph not in seen:
checkgraph(graph)
seen.add(graph)
def fully_annotated_blocks(self):
"""Ignore blocked blocks."""
for block, is_annotated in self.annotated.iteritems():
if is_annotated:
yield block
# XXX: Lots of duplicated codes. Fix this!
# [a] * b
# -->
# c = newlist(a)
# d = mul(c, b)
# -->
# d = alloc_and_set(b, a)
def transform_allocate(self, block_subset):
"""Transforms [a] * b to alloc_and_set(b, a) where b is int."""
for block in block_subset:
length1_lists = {} # maps 'c' to 'a', in the above notation
for i in range(len(block.operations)):
op = block.operations[i]
if (op.opname == 'newlist' and
len(op.args) == 1):
length1_lists[op.result] = op.args[0]
elif (op.opname == 'mul' and
op.args[0] in length1_lists):
new_op = SpaceOperation('alloc_and_set',
(op.args[1], length1_lists[op.args[0]]),
op.result)
block.operations[i] = new_op
# lst += string[x:y]
# -->
# b = getslice(string, x, y)
# c = inplace_add(lst, b)
# -->
# c = extend_with_str_slice(lst, x, y, string)
def transform_extend_with_str_slice(self, block_subset):
"""Transforms lst += string[x:y] to extend_with_str_slice"""
for block in block_subset:
slice_sources = {} # maps b to [string, slice] in the above notation
for i in range(len(block.operations)):
op = block.operations[i]
if (op.opname == 'getslice' and
self.gettype(op.args[0]) is str):
slice_sources[op.result] = op.args
elif (op.opname == 'inplace_add' and
op.args[1] in slice_sources and
self.gettype(op.args[0]) is list):
v_string, v_x, v_y = slice_sources[op.args[1]]
new_op = SpaceOperation('extend_with_str_slice',
[op.args[0], v_x, v_y, v_string],
op.result)
block.operations[i] = new_op
# lst += char*count [or count*char]
# -->
# b = mul(char, count) [or count, char]
# c = inplace_add(lst, b)
# -->
# c = extend_with_char_count(lst, char, count)
def transform_extend_with_char_count(self, block_subset):
"""Transforms lst += char*count to extend_with_char_count"""
for block in block_subset:
mul_sources = {} # maps b to (char, count) in the above notation
for i in range(len(block.operations)):
op = block.operations[i]
if op.opname == 'mul':
s0 = self.annotation(op.args[0])
s1 = self.annotation(op.args[1])
if (isinstance(s0, annmodel.SomeChar) and
isinstance(s1, annmodel.SomeInteger)):
mul_sources[op.result] = op.args[0], op.args[1]
elif (isinstance(s1, annmodel.SomeChar) and
isinstance(s0, annmodel.SomeInteger)):
mul_sources[op.result] = op.args[1], op.args[0]
elif (op.opname == 'inplace_add' and
op.args[1] in mul_sources and
self.gettype(op.args[0]) is list):
v_char, v_count = mul_sources[op.args[1]]
new_op = SpaceOperation('extend_with_char_count',
[op.args[0], v_char, v_count],
op.result)
block.operations[i] = new_op
# x in [2, 3]
# -->
# b = newlist(2, 3)
# c = contains(b, x)
# -->
# c = contains(Constant((2, 3)), x)
def transform_list_contains(self, block_subset):
"""Transforms x in [2, 3]"""
for block in block_subset:
newlist_sources = {} # maps b to [2, 3] in the above notation
for i in range(len(block.operations)):
op = block.operations[i]
if op.opname == 'newlist':
newlist_sources[op.result] = op.args
elif op.opname == 'contains' and op.args[0] in newlist_sources:
items = {}
for v in newlist_sources[op.args[0]]:
s = self.annotation(v)
if not s.is_immutable_constant():
break
items[s.const] = None
else:
# all arguments of the newlist are annotation constants
op.args[0] = Constant(items)
s_dict = self.annotation(op.args[0])
s_dict.dictdef.generalize_key(self.binding(op.args[1]))
def transform_dead_op_vars(self, block_subset):
# we redo the same simplification from simplify.py,
# to kill dead (never-followed) links,
# which can possibly remove more variables.
from rpython.translator.simplify import transform_dead_op_vars_in_blocks
transform_dead_op_vars_in_blocks(block_subset, self.translator.graphs)
def transform_dead_code(self, block_subset):
"""Remove dead code: these are the blocks that are not annotated at all
because the annotation considered that no conditional jump could reach
them."""
for block in block_subset:
for link in block.exits:
if link not in self.links_followed:
lst = list(block.exits)
lst.remove(link)
block.exits = tuple(lst)
if not block.exits:
# oups! cannot reach the end of this block
cutoff_alwaysraising_block(self, block)
elif block.canraise:
# exceptional exit
if block.exits[0].exitcase is not None:
# killed the non-exceptional path!
cutoff_alwaysraising_block(self, block)
if len(block.exits) == 1:
block.exitswitch = None
block.exits[0].exitcase = None
def cutoff_alwaysraising_block(self, block):
"Fix a block whose end can never be reached at run-time."
# search the operation that cannot succeed
can_succeed = [op for op in block.operations
if op.result.annotation is not None]
cannot_succeed = [op for op in block.operations
if op.result.annotation is None]
n = len(can_succeed)
# check consistency
assert can_succeed == block.operations[:n]
assert cannot_succeed == block.operations[n:]
assert 0 <= n < len(block.operations)
# chop off the unreachable end of the block
del block.operations[n+1:]
self.setbinding(block.operations[n].result, annmodel.s_ImpossibleValue)
# insert the equivalent of 'raise AssertionError'
graph = self.annotated[block]
msg = "Call to %r should have raised an exception" % (getattr(graph, 'func', None),)
c1 = Constant(AssertionError)
c2 = Constant(AssertionError(msg))
errlink = Link([c1, c2], graph.exceptblock)
block.recloseblock(errlink, *block.exits)
# record new link to make the transformation idempotent
self.links_followed[errlink] = True
# fix the annotation of the exceptblock.inputargs
etype, evalue = graph.exceptblock.inputargs
s_type = annmodel.SomeTypeOf([evalue])
s_value = annmodel.SomeInstance(self.bookkeeper.getuniqueclassdef(Exception))
self.setbinding(etype, s_type)
self.setbinding(evalue, s_value)
# make sure the bookkeeper knows about AssertionError
self.bookkeeper.getuniqueclassdef(AssertionError)
def insert_ll_stackcheck(translator):
from rpython.translator.backendopt.support import find_calls_from
from rpython.rlib.rstack import stack_check
from rpython.tool.algo.graphlib import Edge, make_edge_dict, break_cycles_v
rtyper = translator.rtyper
graph = rtyper.annotate_helper(stack_check, [])
rtyper.specialize_more_blocks()
stack_check_ptr = rtyper.getcallable(graph)
stack_check_ptr_const = Constant(stack_check_ptr, lltype.typeOf(stack_check_ptr))
edges = set()
insert_in = set()
block2graph = {}
for caller in translator.graphs:
pyobj = getattr(caller, 'func', None)
if pyobj is not None:
if getattr(pyobj, '_dont_insert_stackcheck_', False):
continue
for block, callee in find_calls_from(translator, caller):
if getattr(getattr(callee, 'func', None),
'insert_stack_check_here', False):
insert_in.add(callee.startblock)
block2graph[callee.startblock] = callee
continue
if block is not caller.startblock:
edges.add((caller.startblock, block))
block2graph[caller.startblock] = caller
edges.add((block, callee.startblock))
block2graph[block] = caller
edgelist = [Edge(block1, block2) for (block1, block2) in edges]
edgedict = make_edge_dict(edgelist)
for block in break_cycles_v(edgedict, edgedict):
insert_in.add(block)
for block in insert_in:
v = Variable()
v.concretetype = lltype.Void
unwind_op = SpaceOperation('direct_call', [stack_check_ptr_const], v)
block.operations.insert(0, unwind_op)
# prevents cycles of tail calls from occurring -- such cycles would
# not consume any stack, so would turn into potentially infinite loops
graph = block2graph[block]
graph.inhibit_tail_call = True
return len(insert_in)
default_extra_passes = [
transform_allocate,
transform_extend_with_str_slice,
transform_extend_with_char_count,
transform_list_contains,
]
def transform_graph(ann, extra_passes=None, block_subset=None):
"""Apply set of transformations available."""
# WARNING: this produces incorrect results if the graph has been
# modified by t.simplify() after it had been annotated.
if extra_passes is None:
extra_passes = default_extra_passes
if block_subset is None:
block_subset = fully_annotated_blocks(ann)
if not isinstance(block_subset, dict):
block_subset = dict.fromkeys(block_subset)
if ann.translator:
checkgraphs(ann, block_subset)
transform_dead_code(ann, block_subset)
for pass_ in extra_passes:
pass_(ann, block_subset)
# do this last, after the previous transformations had a
# chance to remove dependency on certain variables
transform_dead_op_vars(ann, block_subset)
if ann.translator:
checkgraphs(ann, block_subset)
|